При ссылках на нашу «группу» из «чудотворцев» и «стайеров» мы игнорируем проблему возможных ложноотрицательных результатов.
Однако наша выборка, скорее всего, не вполне репрезентативна, прежде всего – из-за ее небольшого размера. Получить экстремальный результат в небольшой выборке гораздо легче, чем в большой. В обычном случае можно было бы рассчитать доверительный интервал для нашей оценки 78 %, но для малых выборок этот метод непригоден. Вместо этого мы намереваемся проверить вероятность того, что наша выборка могла быть получена из распределения, в котором равновероятными являются три возможных результата. Так, если мы предположим, что компания-«чудотворец» с одинаковой вероятностью может иметь неценовую, ценовую и такую же относительную конкурентную позицию, как и «середнячок», мы сможем оценить вероятность получения выборки, которую мы фактически получили.
Если использовать аналогию, это можно уподобить оценке вероятности того, что монета действительно симметрична, по результатам определенного числа бросков. Если предполагается, что монета симметрична, и если из 10 бросаний выпадает 6 орлов, то вероятность несимметричности монеты с повышением частоты выпадения орлов равна вероятности выпадения 6 и более орлов из 10 бросаний, то есть 38 %. На этом этапе оценка становится субъективной. Означает ли это, что вероятность того, что монета симметрична, составляет
При тестировании моделей со множеством ячеек, как в приведенной выше таблице, обычно ищут значимую кластеризацию в таблицах сопряженности признаков с помощью так называемой статистики хи-квадрат. Однако для малых выборок (например, когда
С учетом этого мы продолжим аналогию с моделированием. Предположим, что мы бросаем гипотетическую «симметричную» трехстороннюю монету