J. I. Cirac, F. Verstraete (2009). «Renormalization and tensor product states in spin chains and lattices». J. Phys. A 42 (2009), 504004.
{10}. V. Turaev (2010). «Quantum invariants of knots and 3-manifolds». 2nd revised edition, de Gruyter Studies in Mathematics, vol. 18, Walter de Gruyter and Co., Berlin, 2010.
V. Turaev (2010). «Quantum invariants of knots and 3-manifolds». 2nd revised edition, de Gruyter Studies in Mathematics, vol. 18, Walter de Gruyter and Co., Berlin, 2010.
{11}. М. Baake, M. Birkner, R. V. Moody (2010). «Diffraction of stochastic point sets: Explicitly computable examples». Commun. Math. Phys. 293,611.
М. Baake, M. Birkner, R. V. Moody (2010). «Diffraction of stochastic point sets: Explicitly computable examples». Commun. Math. Phys. 293,611.
{12}. L. Freidel, J. Hnybida (2012). «On the exact evaluation of spin networks». <arXiv: 1201.3613v 1 >
L. Freidel, J. Hnybida (2012). «On the exact evaluation of spin networks».
{13} E. Jonckheere, F. Langbein, S. Schirmer (2012). «Curvature of spin networks». <arXiv: 1202.2556vl>
E. Jonckheere, F. Langbein, S. Schirmer (2012). «Curvature of spin networks».
ПРИЛОЖЕНИЯ[124]
ПРИЛОЖЕНИЯ[124]
Внешний вид Барьера
Барьер нововакуума представляет собой поверхность сферы, расширяющейся на скорости 0,5с. Его внешний вид в небе той или иной планеты определяется тем фактом, что, глядя вдаль от ближайшей точки Барьера, наблюдатель заглядывает в прошлое и видит Барьер в момент времени, когда его размеры были меньше.
0,5с
с
На указывают фактические размеры Барьера в пять различных моментов времени, а — кажущиеся размеры и форму в восприятии неподвижного наблюдателя (также отмечен на рисунке), ожидающего прибытия света от Барьера. Математическое выражение для формы этих кривых легко получить, заметив, что время t, прошедшее с момента зарождения нововакуума, равно 2t1+ t2, где t1 — расстояние от центра Барьера до точки на кривой, a t2 — расстояние от этой точки до наблюдателя.