Светлый фон

Вопросы вполне законные и весьма интересные. О том, как вообще могло возникнуть сотрудничество нуклеиновых кислот с белками и чем мог быть полезен когда-то цепочке нуклеотидов белок произвольного состава, мы уже говорили в главе 12. Разберемся теперь с тем, что же случается с прежней функцией белка, когда он осваивает новую.

произвольного состава

Теоретически ответ на этот вопрос предложил еще в 1970 году японский генетик Сусуму Оно. Он предположил, что первым шагом к появлению нового белка является специфическая мутация — удвоение какого-нибудь уже имеющегося гена (такие мутации — они называются дупликациями, или амплификациями, — действительно известны во всех группах организмов; бактерии даже умеют целенаправленно амплифицировать гены). Если это активно работающий ген, то весьма вероятно, что появление его дополнительной копии выгодно организму — и следовательно, будет подхвачено естественным отбором. Но даже если это удвоение не приносит особой пользы, оно имеет шанс распространиться в популяции или даже зафиксироваться в качестве видовой нормы как всякая нейтральная мутация (см. главу 7). Разумеется, бывают случаи, когда присутствие «лишней» копии вредно организму, но тогда ничего особо интересного не произойдет: либо удвоение будет быстро отсечено естественным отбором, либо одна из копий будет инактивирована и со временем превратится в псевдоген. А вот если оно так или иначе, через отбор или через случайный дрейф, закрепится в геноме, это создаст предпосылки для дальнейшей эволюции: ведь теперь если один из генов-близнецов мутирует, второй обеспечит выполнение прежней функции. И если какая-то из мутаций позволит измененному белку выполнять новую функцию, это опять-таки будет подхвачено отбором. Разумеется, поначалу такой «сменивший профессию» белок будет малоэффективен в своей новой роли — но уж что-что, а совершенствовать уже имеющуюся функцию отбор умеет прекрасно.

дупликациями, амплификациями

Вернемся к превращению тирозиназы в гемоцианин (см. выше). У моллюсков, использующих гемоцианин, тирозиназа тоже есть. Вероятно, у каких-то их предков в геноме появилась «лишняя» копия гена этого фермента, а затем в одной из копий произошла мутация. Получившийся мутантный белок уже не мог катализировать окисление тирозина, но по-прежнему мог легко присоединять и отдавать кислород. В итоге он «нашел себе работу» в организме уже в качестве дыхательного пигмента — переносчика кислорода.

Схема Оно выглядела весьма правдоподобной, но оставалась сугубо умозрительной до тех пор, пока расшифровка и сопоставление нуклеотидных и аминокислотных последовательностей не стали рутинным делом. По мере роста баз данных по геномам, генам и белкам примеры, иллюстрирующие теорию Оно, стали появляться в таком количестве, что эволюционная история генов превратилась в большой самостоятельный раздел молекулярной филогенетики. Появилась возможность даже оценить количественно вероятность различных сценариев развития взаимоотношений генов-близнецов.