Светлый фон

 

 

Однако если мы это сделаем, то получим 0. Для недоверчивых привожу доказательство:

 

 

Это происходит, поскольку одни отклонения являются положительными (когда Барсик больше среднего), а другие — отрицательными (когда Барсик меньше среднего). Поэтому необходимо избавиться от знака. Сделать это можно двумя способами: либо взять модуль от отклонений, либо возвести их в квадрат, который, как мы помним, всегда положителен. Последнее применяется чаще.

 

 

И, если мы найдем среднее от квадратов отклонений, мы получим то, что называется дисперсией. Однако, к большому сожалению, квадрат в этой формуле делает дисперсию очень неудобной для оценки разнообразия котиков: если мы измеряли размер в сантиметрах, то дисперсия имеет размерность в квадратных сантиметрах. Поэтому для удобства использования дисперсию берут под корень, получая по итогу показатель, называемый среднеквадратическим отклонением.

дисперсией среднеквадратическим отклонением

 

 

К несчастью, дисперсия и среднеквадратическое отклонение так же неустойчивы к выбросам, как и среднее арифметическое.

Среднее значение и среднеквадратическое отклонение очень часто совместно используются для описания той или иной группы котиков. Дело в том, что, как правило, большинство (а именно около 68%) котиков находится в пределе одного среднеквадратического отклонения от среднего. Эти котики обладают так называемым нормальным размером. Оставшиеся 32% либо очень большие, либо очень маленькие. В целом же для большинства котиковых признаков картина выглядит вот так.

нормальным размером

 

 

Такой график называется нормальным распределением признака.

нормальным распределением