Могут ли природные протонные градиенты инициировать восстановление CO
2
Herschy, B., Whicher, A., Camprubi, E., Watson, C., Dartnell, L., Ward, J., Evans, J. R. G., and N. Lane An origin-of-life reactor to simulate alkaline hydrothermal vents // Journal of Molecular Evolution 79: 213–227 (2014).
Herschy, B., Whicher, A., Camprubi, E., Watson, C., Dartnell, L., Ward, J., Evans, J. R. G., and N. Lane
An origin-of-life reactor to simulate alkaline hydrothermal vents
Herschy, B. Nature’s electrochemical flow reactors: Alkaline hydrothermal vents and the origins of life // Biochemist 36: 4–8 (2014).
Herschy, B.
Nature’s electrochemical flow reactors: Alkaline hydrothermal vents and the origins of life
Lane, N. Bioenergetic constraints on the evolution of complex life // Cold Spring Harbor Perspectives in Biology, doi: 10.1101/cshperspect.a015982 (2014).
Lane, N.
Bioenergetic constraints on the evolution of complex life
Nitschke, W., and M. J. Russell Hydrothermal focusing of chemical and chemiosmotic energy, supported by delivery of catalytic Fe, Ni, Mo, Co, S and Se forced life to emerge // Journal of Molecular Evolution 69: 481–496 (2009).
Nitschke, W., and M. J. Russell
Hydrothermal focusing of chemical and chemiosmotic energy, supported by delivery of catalytic Fe, Ni, Mo, Co, S and Se forced life to emerge
Yamaguchi, A., Yamamoto, M., Takai, K., Ishii, T., Hashimoto, K., and R. Nakamura Electrochemical CO2 reduction by Nicontaining iron sulfides: how is CO2 electrochemically reduced at bisulfide-bearing deep sea hydrothermal precipitates? // Electrochimica Acta 141: 311–318 (2014).
Yamaguchi, A., Yamamoto, M., Takai, K., Ishii, T., Hashimoto, K., and R. Nakamura
Electrochemical CO
reduction by Nicontaining iron sulfides: how is CO
electrochemically reduced at bisulfide-bearing deep sea hydrothermal precipitates?
Вероятность серпентинизации на других планетах Млечного Пути