Светлый фон
возможен поправляется

 

Рис. 11.8. Слева: зависимость величины волновой функции от координаты точки (темная кривая) отлична от нуля в некотором интервале. Ограничивающий профиль (серая кривая) заметно отличен от нуля в более узком интервале. Справа: умножение волновой функции на ограничивающий профиль сужает пространственную область, в которой волновая функция может сколько-нибудь заметно отличаться от нуля

Рис. 11.8. Слева: Справа:

 

Зато (раз в 100 млн лет) радикально меняются волновые функции с «растекшейся» зависимостью от точек в пространстве. Например, если электрону доступны две дороги (скажем, пролететь сверху или снизу в приборе Штерна – Герлаха), то в его волновой функции это отражено примерно так, как показывает двугорбая кривая на рис. 11.9 слева: горбы отвечают двум разным пространственным областям, и электрон с той или иной вероятностью может быть обнаружен в каждой из них, что (с некоторой долей условности) закодировано в его волновой функции a · |в области 1⟩ + b · |в области 2⟩. На такую волновую функцию умножение на ограничивающий профиль производит радикальный эффект: шансы не исчезнуть остаются только у какого-то одного горба, как это показано на рис. 11.9 справа; во всех точках вдали от центра профиля волновая функция умножается на число, практически равное нулю; в результате электрон оказывается локализован в пределах не более чем 10–5 сантиметра где-то в одном месте.

a b

 

Рис. 11.9. Слева: волновая функция (темная кривая) заметно отлична от нуля в двух различных областях, показанных в одномерном случае как два интервала. Ограничивающий профиль (серая кривая) может возникнуть только в одной из этих областей. Справа: умножение волновой функции на ограничивающий профиль оставляет только один из двух интервалов (областей), где волновая функция заметно отлична от нуля

Рис. 11.9. Слева: Справа:

 

Пора сказать, где же случаются эти коллапсы – умножения на ограничивающий профиль. Это, как и выбор момента для такого события, тоже случайная величина, но случайность регулируется вероятностями, а эти вероятности – вы правильно подумали! – определяются с учетом имеющейся волновой функции. Резюме в довольно нестрогом виде состоит в том, что коллапс вероятнее там, где волновая функция «выше» (при этом наиболее чувствительны к результату коллапса, как мы видели, «широкие» волновые функции). Математические детали организованы таким образом, что коллапс и в самом деле происходит чаще всего там, где «измерение» скорее всего и обнаружило бы частицу. (Конечно, никаких «измерений» в качестве причины коллапса здесь не требуется. Коллапс происходит спонтанно, но, как мы очень скоро увидим, в присутствии макроскопического прибора все выглядит в точности так, как если бы это самое присутствие вызывало коллапс.) Я опустил бы подробности, если бы в них не участвовало гауссово размытие, по разным поводам применяемое при обработке изображений. Математически при гауссовом размытии используется в точности такой же ограничивающий профиль (он и называется гауссовым – и в методах обработки изображений, и в теории спонтанного коллапса). Правда, для реализации размытия надо не умножать его на функцию, описывающую изображение, а выполнить операцию так называемой свертки с ней. Центр профиля для этого помещается в выбранный пиксель, после чего содержимое пикселя заменяется на среднее по всем пикселям, но в это среднее более далекие пиксели вносят все меньший вклад, потому что их содержимое умножается на соответствующую высоту профиля, которая быстро убывает по мере удаления от центра[287]. Точно так же определяется и вероятность коллапса с центром в той или иной точке! Требуется вычислить свертку квадрата волновой функции с ограничивающим профилем: там, где результат свертки больше, вероятность коллапса выше.