Светлый фон
B F

• Фотон (γ) – переносчик электромагнитного взаимодействия. Он вступает в контакт только с теми элементарными частицами, у которых есть электрический заряд. На рис. В.3 это все, кроме трех нейтрино. Сам же фотон электрического заряда не имеет, из-за чего при испускании и поглощении фотона электрический заряд участников этого процесса не меняется. Фотон – античастица сам себе.

• Зет-бозон (Z) и дубльвэ-бозоны (W±) – частицы, которые не получили хороших названий, а вместо этого содержат в своем имени технический термин «бозон»; они являются переносчиками слабого взаимодействия. Один из них (Z) нейтральный по электрическому заряду (и античастица сам себе). Два других (W±) имеют заряды +1 и –1 (и являются античастицами друг для друга) – единственный случай, когда переносчик некоторого взаимодействия сам чувствителен к другому взаимодействию (в данном случае – электромагнитному). Слабое взаимодействие слабое, но чрезвычайно универсальное: зарядом по отношению к нему обладают все фермионы. В моих игорных терминах карты и «совсем козыри», потому что способны «контактировать» с каждой картой из колоды F. Однако это довольно специфические козыри: испускание или поглощение W± бозонов всегда происходит с изменением не только заряда, но и типа участвующего фермиона, т. е. с изменением значения карты: например, d-кварк испустив W-бозон, превращается в u-кварк . Собственно говоря, все приведенные выше примеры превращений кварков происходят в действительности в два этапа (которые крайне быстро сменяют один другой): сначала кварки превращаются по схемам типа

Z W Z W слабое все F W d W u

 

 

(где можно по-разному распределять масти), после чего распадаются одним из (многих) возможных способов.

• Глюоны (g) переносят сильное взаимодействие между кварками. Они испускаются и поглощаются кварками, причем процесс устроен опять интереснее, чем в случае электромагнитного взаимодействия и фотонов. Переходя от кварка к кварку, глюоны переносят между ними цветовой заряд; цветовые заряды кварков при этом меняются. Цветовой заряд, как и электрический, сохраняется, и из-за этого каждый глюон переносит что-то вроде разности двух зарядов. Например, кварк с зеленым зарядом может испустить глюон и приобрести красный заряд; глюон должен тогда унести с собой зеленый-антикрасный заряд. Встретив красный кварк и поглотившись им, такой глюон превратит этот кварк в зеленый. Встретив же антизеленый антикварк, такой глюон превратит его в антикрасный[316]. Довольно ключевое свойство глюонов состоит в том, что они не только осуществляют обмен цветами между кварками, но и сами взаимодействуют друг с другом: по три или даже по четыре за один раз. Один глюон может разделиться на два или на три, два или три могут слиться в один, и два могут превратиться в два других; все это происходит с сохранением цветового заряда.