Благодарности
Благодарности
Джон хотел бы поблагодарить свою семью и друзей за их содействие и поддержку в процессе подготовки этой книги и посвящает ее своему отцу Джону Бернарду Келлехеру в знак признания его любви и дружбы.
Брендан хотел бы поблагодарить Грейс, Дэниела и Элеонору за их постоянную поддержку при написании всех его книг (эта уже четвертая), что позволило совмещать работу и путешествия.
Глава 1. Что такое наука о данных?
Глава 1. Что такое наука о данных?
Наука о данных включает в себя набор принципов, методов постановки задач, алгоритмов и процессов для выявления скрытых полезных закономерностей в больших данных. Многие элементы этой науки были разработаны в смежных областях, таких как машинное обучение и глубинный анализ данных. Фактически термины «наука о данных», «машинное обучение» и «глубинный анализ данных» часто используются взаимозаменяемо. Эти дисциплины объединяет то, что все они направлены на улучшение процесса принятия решений посредством анализа данных. Однако, хотя наука о данных заимствует методы перечисленных областей, она имеет более широкий охват. Машинное обучение фокусируется на разработке и оценке алгоритмов выявления закономерностей в данных. Глубинный анализ данных, как правило, предполагает анализ структурированных данных и часто подразумевает акцент на коммерческих приложениях. Наука о данных учитывает и то и другое, при этом охватывает и другие проблемы: очистку и преобразование неструктурированных веб-данных и информации из социальных сетей, хранение и обработку больших неструктурированных наборов данных и вопросы, связанные с этикой и регулированием.
Используя науку о данных, мы можем выявлять различные типы закономерностей. Например, нам понадобилось выявить закономерности, которые помогут идентифицировать группы клиентов, демонстрирующих сходное поведение и вкусы. На языке бизнеса эта задача известна как