Salzberg, H. W. (1991). From caveman to chemist: Circumstances and achievements. Washington DC: American Chemical Society.
Samelson, H. (1995). Descartes and differential geometry. In Geo metry, topology, & physics, Conf. Proc. Lecture Notes in Geometry and Topology, IV, 323–328. Cambridge, MA: Internat. Press.
--. (1996). In defense of Euler. Enseign. Math. (2) 42 (3–4), 377–382.
Sandifer, E. (2004). How Euler did it: V, E and F, parts 1 and 2. Mathematical Association of America Online. http://www.maa.org/news/howeulerdidit.html.
Sarkaria, K. S. (1999). The topological work of Henri Poincare. In History of topology, 123–167. Amsterdam: North-Holland.
Schechter, B. (1998). My brain is open: The mathematical journeys of Paul Erdos. New York: Touchstone.
Schlafli, L. (1901). Theorie der vielfachen Kontinuitat. Denkschr. Schweiz. naturf. Ges. 38, 1-237.
Scholz, E. (1999). The concept of manifold, 1850–1950. In I. M. James (ed.), History of topology, 25–64. Amsterdam: North-Holland.
Seifert, H. (1934). Uber das Geschlecht von Knotten. Math. Ann. 110, 571–592.
Seifert, H., and W. Threlfall (1980). Seifert and Threlfall: A textbook of topology, vol. 89 of Pure and Applied Mathematics. Translated from the German edition of 1934 by Michael A. Goldman, with a preface by Joan S. Birman. With «Topolo-gy of 3-dimensional fibered spaces» by Seifert, translated from the German by Wolfgang Heil. New York: Academic Press. Harcourt Brace Jovanovich Publishers.
Senechal, M. (1988). A visit to the polyhedron kingdom. In M. Senechal and G. Fleck (eds.), Shaping space: A polyhedral approach, proceedings of 1984 conference held in Northampton, MA, 3-43. Boston, Design Science Collection, Birkhauser Boston.
Shakespeare, W. (1992). Hamlet. New York: Dover.
--. (2002). Twelfth night. Woodbury, CT: Barron's Educational Series.
Simmons, G. F. (1992). Calculus gems: Brief lives and memorable mathematics. With portraits by Maceo Mitchell. New York: McGraw-Hill.
Simpson, J., and E. Weiner (eds.) (1989). Oxford English Dictionary (2nd ed.). Oxford: Clarendon Press.
Sloane, N. J. A. (2007). The online encyclopedia of integer sequences. http://www.research.att.com/~njas/sequences.
Smale, S. (1961). Generalized Poincare's conjecture in dimensions greater than four. Ann. of Math. (2) 74, 391–406.
--. (1990). The story of the higher dimensional Poincare conjecture (what really actually happened on the beaches of Rio). Math. Intelligencer 12 (2), 44–51.
--. (1998). Mathematical problems for the next century. Math. Intelligencer 20 (2), 7-15.