Светлый фон

— Где середина? Нет её! — Затем Нулик снова соединил обе половинки карандаша. — Вот она, середина! — и снова разъединил. — Опять исчезла!

Так он играл довольно долго, ожидая, вероятно, исчерпывающего объяснения со стороны. Но объяснения всё не было. По правде говоря, я и сам не знал, каким образом объяснить ребятам этот забавный парадокс, чем-то похожий на софизмы Зенона, которыми мы занимались ещё в прошлом году. Уж больно это не просто!

— Мне кажется, дело здесь в том, — решился я наконец, — что слово «середина» имеет смысл лишь тогда, когда речь идёт о целом отрезке, в данном случае о целом карандаше. Как только карандаш разрезан пополам, слово «середина» теряет свой смысл. Карандаш, как целое, исчез. Остались две его половинки, и у каждой из них своя середина. Кроме того, середина — это точка, а точка в математике — понятие условное. Нет у неё ни длины, ни ширины, ни толщины. Значит, условно и понятие «середина». Вообразить точку, называемую серединой, можно, но воткнуть в неё реально существующую иглу — пусть самую тонкую, самую острую — нельзя.

— Но ведь втыкаем же мы иглу циркуля в центр окружности? — возразил президент.

— Конечно, втыкаем, но неглубоко, — пошутил я. — И так как всякому овощу своё время…

— …не станем углубляться в этот вопрос! Это вы хотели сказать? — спросил Нулик язвительно.

Я с сожалением развёл руками.

— Что делать!

— Понимаю! — вздохнул президент. — Переходим к следующей задаче.

— К той, что задал Магистру Главный Кубист и Шарист? — спросил Сева.

— К той самой, — кивнул Нулик. — И какой же он неблагодарный, этот Кубист и Шарист! Магистр решил его задачу, а он даже спасибо не сказал!

— С чего ты взял, что Магистр решил задачу?

— А разве нет? Ведь шар в самом деле можно вписать в куб, и в кубе после этого ещё останется немножко незаполненного места. Стало быть, объём и поверхность куба чуть больше, чем у шара.

— Положим, не чуть, — сказал Сева, — а примерно раза в два. Но дело ведь не в этом, а в том, сколько потребуется бумаги, чтобы обклеить шарики и кубики с увеличенными в восемь раз объёмами.

— Наверное, для этого надо узнать, во сколько раз увеличилась при этом поверхность, — сообразил Нулик.

— Наконец я слышу речь не мальчика, но мужа! — сказал Сева, не устояв перед соблазном лишний раз процитировать Пушкина. — И ты сейчас сам убедишься, что это совсем нетрудно.

— Кому как! — мрачно буркнул Нулик.

— Начнём с шара, — продолжал Сева, не обращая внимания на эту реплику. — Сперва займёмся его объёмом. Как и всякий объём, объём шара измеряется в кубических единицах и пропорционален кубу его радиуса. Значит, если объём увеличился в восемь раз, то радиус увеличился только в два раза.