Прежде чем отойти от этого примера, я хотел бы еще раз прокомментировать компьютерные модели. Большинству ученых приходится усердно работать, чтобы получить контрфактивную информацию, скажем мучительно комбинируя данные наблюдательных и экспериментальных исследований. Ученые-климатологи могут легко получить контрфактивные данные из компьютерных моделей: достаточно ввести новое значение для концентрации углекислого газа в воздухе и дать программе поработать. «Легко», конечно, здесь понятие относительное. За простой причинно-следственной схемой на рис. 54 скрывается невероятно сложная функция-ответ, заданная миллионами строк компьютерного кода, которые используются для моделирования климата.
Здесь возникает естественный вопрос: насколько мы можем доверять компьютерному моделированию? У этого вопроса есть политические нюансы, особенно здесь, в США. Однако я постараюсь дать аполитичный ответ. Я считаю, что функция-ответ в этом примере вызывает гораздо больше доверия, чем линейные модели, которые так часто встречаются в естественных и социальных науках. Линейные модели часто выбирают только по причине удобства. Для сравнения: климатические модели отражают более чем вековые исследования физиков, метеорологов и климатологов. Это усилия ученых понять процессы, которые определяют нашу погоду и климат. По любым нормальным научным стандартам климатические модели являются веским и убедительным доказательством, но с одной оговоркой. Хотя они превосходно предсказывают погоду на несколько дней вперед, они никогда не проверялись в перспективных исследованиях на протяжении веков, поэтому все еще содержат систематические ошибки, о которых мы не знаем.
Мир контрфактивного
Мир контрфактивного
Я надеюсь, к этому моменту уже очевидно, что контрфактивные суждения — важный инструмент познания мира и нашего воздействия на него. Хотя мы никогда не сможем пройти по обеим дорожкам, расходящимся в лесу, во многих случаях получится с достаточной уверенностью предсказать, куда они ведут.
Несомненно, разнообразие и богатство причинно-следственных запросов, которые обрабатываются с помощью причинного вывода, значительно возрастет, если мы включим в них контрфактивные утверждения. Другой очень популярный тип запроса, который я здесь не обсуждал, называется влиянием лечения на получивших его (