Светлый фон
Кинематика.

Доказав, что число степеней свободы для неизменяемой системы, точки которой не все лежат на одной прямой, есть шесть, Александр Михайлович, приняв за независимые переменные координаты какой-либо точки системы и три эйлеровых угла, выводит формулы для 9 косинусов углов между подвижными и неподвижными осями, после чего переходит к исследованию движения неизменяемой системы. Исходною теоремою ему служит теорема о постоянстве проекции скорости точек, лежащих на прямой, на эту прямую, доказав и пояснив которую примерами, он подробно изучает вращательное движение твердого тела около неподвижной точки, причем строго как геометрически, так и чисто аналитически доказывает основные свойства подвижного и неподвижного аксоидов, поясняя их несколькими примерами. Затем изучается общее движение неизменяемой системы и показывается, как найти центральную ось во всякий момент, причем как пример приводится движение Земли; как частный случай изучаются движение, параллельное плоскости, центроиды и рулеты вообще, после чего, вернувшись к общему случаю, показываются существование и способы определения аксоидов центральных осей, причем попутно поясняются главнейшие свойства развертывающихся и неразвертывающихся линейчатых поверхностей.

Далее следует изучение ускорения точек неизменяемой системы в абсолютном движении, указывается аналогия выражений проекций ускорения на координатные оси с выражениями проекций скоростей и дается понятие о центре ускорений.

Последний отдел кинематики заключает учение об относительном движении, причем сперва рассматривается движение точки по отношению к движущейся системе и выводятся выражения проекций скоростей и ускорений, а затем исследуется движение одной неизменяемой системы по отношению к другой; аналитически выводится правило сложения угловых скоростей, и в заключение получается теорема Шаля о разложении винтового движения на два вращательных.

Непосредственным продолжением «Кинематики» служит «Динамика материальной точки». Содержание этого курса следующее. По установлении основных понятий и формулировке законов инерции и независимости действия сил рассматривается движение свободной материальной точки, сперва прямолинейное, причем приводятся обычные случаи интегрируемости в квадратурах уравнений такого движения, затем криволинейное, причем сперва разбираются случаи, когда траектория есть кривая плоская, и как пример рассматриваются общие свойства движения тяжелой точки в среде, сопротивление которой выражается заданной функцией скорости. Движение под действием центральной силы изучается более подробно как для Ньютонова закона притяжения, так и для притяжения, пропорционального первой степени расстояния. Далее рассматривается движение точки под действием силы, имеющей силовую функцию, причем доказываются свойства так называемой главной функции и связь между полным решением дифференциального уравнения в частных производных, которому она удовлетворяет, с интегралами уравнений движения точки, и для примера по этой методе составляются интегралы уравнений движений точки, притягиваемой к неподвижному центру по какому-либо закону, в зависимости от расстояния. Учение о движении свободной точки заканчивается рассмотрением относительного движения такой точки, причем подробно разобран случай движения тяжелой точки по отношению к земле.