Светлый фон
«Динамика материальной точки».

Динамика несвободной материальной точки начинается с установления условий, которым должны удовлетворять скорость и ускорение точки при движении ее по данной поверхности, как удерживающей, так и неудерживающей; составляются выражения реакции поверхности и силы трения и уравнения движения точки для того и другого случая, для поверхности, как постоянной, так и изменяющейся с течением времени. Совершенно так же рассматривается вопрос о движении точки по данной постоянной или переменной кривой с трением и без трения. После вывода условия, при котором существует для несвободного движения точки интеграл живой силы, рассматривается движение тяжелой точки по заданной линии и как пример – математический маятник без сопротивления и при сопротивлении, пропорциональном квадрату скорости, не ограничиваясь при этом случаем малых колебаний. Затем дается решение задач о таутохроне и брахистотроне, для первой весьма простое, принадлежащее Puiseux, для второй – по общим правилам вариационного исчисления. Как пример движения точки по движущейся линии рассматривается задача о движении точки по вращающейся прямой. В примерах движения точки по поверхности сперва рассматривается случай движения без действия внешних сил и дается понятие о геодезической линии для данной поверхности, затем исследуется движение сферического маятника, маятника Фуко и движение точки по вращающейся плоскости. курс заканчивается рассмотрением вопроса об ударе точки о поверхность.

Динамика несвободной материальной точки

Лекции о механике систем точек начинаются с изложения статики. Здесь также предполагается, что учащимися уже пройден элементарный курс, поэтому статика начинается с установления общих условий равновесия твердого тела, после чего рассматриваются веревочные и стержневые многоугольники, подробно разбирается задача о цепной линии и показывается ее аналогия с задачею о движении материальной точки. В заключение излагается начало возможных перемещений, причем дается лагранжево доказательство, существенно, однако, дополненное в том отношении, что показывается не только необходимость, но и достаточность выведенного общего условия равновесия всякой системы, причем связи рассматриваются как удерживающие, так и неудерживающие.

механике систем точек статики.

Динамика систем точек начинается с обстоятельного разбора тех условий, которые излагаются удерживающими и неудерживающими связями на скорости и ускорении точек системы; случай неудерживающих связей рассмотрен при этом гораздо подробнее, нежели это обычно делается. Составив уравнения движения всякой системы и объяснив начало Д'Аламбера, Александр Михайлович подробно останавливается на рассмотрении первой лагранжевой формы дифференциальных уравнений движения и доказывает в совершенно общем виде, что эти уравнения, по исключении из них проекций ускорений, пользуясь уравнениями связей, всегда разрешимы относительно лагранжевых множителей. По выяснении понятия об интегралах системы выводятся законы сохранения движения центра инерции, площадей и живой силы для свободной системы точек как в абсолютном их движении, так и в относительном по отношению к центру инерции. Как пример сперва рассматривается задача двух тел, притягивающихся по закону Ньютона, затем составляются дифференциальные уравнения движения для случая (л + 1) точки и находятся их известные 10 интегралов. В заключение отдела о движении свободной системы рассматривается случай системы точек, притягивающихся или отталкивающихся пропорционально расстоянию.