Светлый фон
daf-16 daf-16 daf-16 daf-16

Это дает основания предположить, что повышение устойчивости к окислительному стрессу служит общим механизмом замедления старения у всех животных, хотя это не всегда проявляется так очевидно, как у нематод. Я хочу выделить три группы взаимосвязанных факторов: во-первых, COД и каталаза, во-вторых, ферменты репарации ДНК, в-третьих, ограничение калорийности питания.

В 1994 г. Уильям Орр и Раджиндер Сохал из Южного методистского университета Далласа опубликовали в журнале Science первые прямые доказательства замедления старения при повышении уровня антиоксидантов в организме. Генно-инженерным путем они создали трансгенных дрозофил, способных синтезировать больше СОД и каталазы. Продолжительность жизни этих дрозофил была примерно на треть больше нормы. Важно заметить, что по отдельности эти ферменты не оказывали никакого влияния на продолжительность жизни: они работали только сообща, и их синтез был координирован. В результате совместного действия ферментов увеличивалась как средняя, так и максимальная продолжительность жизни насекомых, что связывали с их меньшей чувствительностью к ионизирующему излучению и менее выраженному окислительному повреждению ДНК и белков. Кроме того, трансгенные дрозофилы были более активными в пожилом возрасте, что связано примерно с 30%-ным повышением их энергетического потенциала продолжительности жизни (LEP; что эквивалентно увеличению числа сердцебиений за время жизни). Таким образом, повышение уровня СОД и каталазы не просто связано со снижением «скорости жизни»: трансгенные дрозофилы жили с той же скоростью, что и нормальные дрозофилы, но дольше. Более поздние исследования с применением новых генно-инженерных технологий позволили увеличить продолжительность жизни дрозофил на 50%[71].

Science

Необходимость совместного действия СОД и каталазы связана со сложной структурой сети антиоксидантов; конечно же, СОД и каталаза работают не в одиночестве. Устойчивость к стрессу является результатом действия многофакторной системы, включающей в себя эффективный оборот белков и репарацию ДНК — наш второй фактор.

Важнейшую роль репарации ДНК в клетках человека можно проиллюстрировать на примере болезни, при которой эта система не работает. Синдром Вернера — редкое генетическое заболевание, в результате его люди очень быстро стареют. Рано седеют волосы, проявляются другие симптомы старения, включая катаракту, атрофию мышц, уменьшение костной массы, диабет, атеросклероз и рак. Больные обычно умирают в возрасте около 40 лет от сердечно-сосудистых заболеваний и рака. Изучая этот неизлечимый синдром, ученые надеялись больше узнать о процессе старения в целом и помочь всему человечеству. Но спектр симптомов заболевания не является полным отражением нормального старения, так что в конечном итоге ученые сочли синдром Вернера «карикатурой на старение». Однако в 1997 г. было сделано важное открытие — выделен ген, ответственный за развитие синдрома. Этот ген кодирует необычный бифункциональный фермент: одна активность фермента связана с раскручиванием спирали ДНК (геликазная активность), а другая — с вырезанием и заменой неправильных оснований ДНК (экзонуклеазная активность). Таким образом, фермент отвечает за исправление ошибок в ДНК, возникающих в процессе репликации и рекомбинации или в результате спонтанных мутаций, многие из которых возникают под действием свободных радикалов кислорода.