Впервые митохондриальную теорию старения предложил автор свободнорадикальной теории Денам Харман. Позднее его идеи развивал Джейм Мигель из Института нейронаук в Аликанте (Испания) и другие ученые. Суть идеи в следующем. Свободные радикалы образуются постоянно и в непосредственной близости от митохондриальной ДНК. Митохондриальная ДНК «голая» — она не связана с белками и поэтому незащищена. Более того, митохондрии имеют лишь рудиментарную систему репарации ДНК. Поэтому ошибки в митохондриальной ДНК накапливаются очень быстро. Поскольку митохондрии очень редко вступают в «половые отношения», сливаясь друг с другом, такие ошибки нельзя ликвидировать путем рекомбинации. По этой причине скорость мутаций митохондриальной ДНК в ходе эволюции намного выше скорости мутаций ядерной ДНК[74]. Ситуация неприятная: наиболее опасный клеточный отдел содержит самую незащищенную ДНК. Это порочный круг: мутированные митохондриальные гены направляют синтез дефектных дыхательных белков, которые пропускают больше свободных радикалов, вызывающих дополнительные повреждения ДНК. Этот процесс неизбежно должен приводить к старению и смерти. Вообще говоря, удивительно, что при этом мы живем так долго.
В 1988 г. Кристоф Рихтер, Джин-Йо Парк и Брюс Эймс из Университета в Беркли сравнивали количество повреждений в митохондриальной и ядерной ДНК (которая защищена собственной мембраной и белками и находится на некотором расстоянии от митохондрий). Возможно, их результаты могут подтвердить справедливость митохондриальной теории старения: окислительные повреждения митохондриальной ДНК примерно в 20 раз сильнее повреждений ядерной ДНК. На протяжении 1990-х гг. несколько групп ученых пытались воспроизвести эти результаты, однако полученные данные характеризуются очень сильным разбросом. В более поздней статье Брюса Эймса и Кеннета Бекмана отмечается, что оценки окислительных повреждений расходятся более чем в 60 тыс. раз! (Всегда приятно, когда ученые не боятся пересматривать ими же выдвинутые теории.) Никто не говорит, что ранние данные были подтасованы: дело в том, что даже более совершенные современные методы измерения приводят к большому числу ошибок. Эймс и Бекман заключают следующее:
«В целом, несмотря на достаточную популярность и простоту идеи о том, что митохондриальная ДНК подвергается более сильному окислительному повреждению, чем ядерная ДНК, у этой идеи пока нет никаких весомых оснований. Из-за несоответствия методов анализа окислительных повреждений приходится заключить, что мы пока не знаем базового уровня окислительных повреждений митохондриальной ДHK; более того, у наc нет хороших оценочных данных окислительного повреждения ядерной ДНК, с которыми можно проводить сравнение».