Светлый фон
warp drive много одно Солнце шутя

Да, и даже при бесперебойном обеспечении экзотической материей остается небольшая проблема управления ворп-драйвом: экипажу в какой-то момент захочется остановиться, а для этого понадобится как-то перераспределить ту самую экзотическую материю. Потребуется послать к ней какой-то сигнал; но экипаж обнаружит, что до передней части стенки пузыря сигналы не доходят. Даже свет, который они туда направят, «застрянет», остановившись где-то внутри стенки, но определенно не выйдя наружу: экипаж увидит там горизонт. Управление путешествием заметно усложняется: или им придется использовать маленькие алькубьерровские пузырьки для передачи сигналов внутри своего большого пузыря, или, скорее, всю экзотическую материю потребуется заранее распределить вдоль пути требуемым образом. Для чего сначала надо там побывать, а затем обеспечить надзор за состоянием и сохранностью этого недешевого ресурса.

горизонт маленькие

*****

Пустая кривизна. Эйнштейн представил окончательный, логически безупречный вид своих уравнений (без лямбды, разумеется) 25 ноября 1915 г., а меньше месяца спустя у него в руках уже было их точное решение – пришедшее письмом с Восточного фронта и описывающее, как устроена метрика вокруг притягивающего центра. Без сомнения, радовала возможность точно (а не приближенно, как делал сам Эйнштейн, вычисляя перед тем поворот орбиты Меркурия) решить сложные уравнения. Основная трудность с ними в том, что «кривизна не складывается»: если два тела создают кривизну, то нельзя найти сначала кривизну, создаваемую одним телом, потом другим, а потом их сложить. В теории Ньютона было не так: отдельно посчитанные силы притяжения со стороны Солнца и со стороны Луны просто складывались. У Ньютона, как мы помним, проблемы с точным решением, описывающим движение тел под действием взаимного притяжения, начинались с трех тел; точное решение можно записать только для задачи двух тел. В случае уравнений Эйнштейна точно решается только задача одного тела. Мы просто не знаем, как формулами описать метрику пространства-времени, например, при наличии двух близких друг к другу черных дыр. А вот черная дыра в полном одиночестве – точное решение задачи одного тела – и появилась впервые в письме, полученном Эйнштейном 22 декабря 1915 г. от Карла Шварцшильда.

точное одного

Незадолго перед тем, в ноябре, во время своего отпуска с фронта Шварцшильд присутствовал на лекции Эйнштейна и затем за пару недель «создал» черную дыру[148]. Впрочем, звучное название «черная дыра» придумал Уилер только полстолетия спустя, а в конце 1910-х и в последующие годы решение Шварцшильда привлекало к себе сдержанное внимание, и не все его свойства были поняты сразу. Прежде всего бросались в глаза особенности приближения к горизонту, как они виделись со стороны далекого внешнего наблюдателя («болельщиков»); понимание, что падающий наблюдатель не обнаружит на горизонте ничего специального – собственно говоря, вообще ничего – и бодро пролетит через него, пришло сильно не сразу. Эйнштейну вообще определенно не нравилась идея черных дыр в качестве астрофизических объектов. Закон природы, выраженный в уравнениях Эйнштейна, и найденное математически проявление этого закона – решение Шварцшильда – опережали наблюдения. Тем не менее неочевидные в исходной формулировке свойства этого решения постепенно прояснялись, включая и тот факт, что у черной дыры есть внутренность, откуда нельзя выбраться, но нет ничего похожего на твердую границу или «стенку». Все, что мы говорили про невращающуюся черную дыру на предыдущей прогулке, относилось к черной дыре Шварцшильда. Вращающуюся черную дыру как другое (и заметно более сложное) точное решение уравнений Эйнштейна много позже, в 1963 г., нашел Керр.