Светлый фон
Рис. 7.16. A B

 

Движение свидетельствовало о гравитационных волнах

Движение свидетельствовало о гравитационных волнах

Слишком больших сомнений в существовании гравитационных волн не было с тех пор, как излучение энергии в гравитационные волны косвенно измерили за счет движения тел. Открытый в 1974 г. пульсар PSR B1913+16, более известный как пульсар Халса – Тейлора (по именам открывателей и будущих нобелевских лауреатов), вращается вокруг своей оси 17 раз в секунду, и с такой периодичностью на Земле можно детектировать приходящее от него электромагнитное излучение. Пульсары – это вращающиеся нейтронные звезды, которые из-за своего вращения и сильнейшего собственного магнитного поля выглядят для далеких наблюдателей как космические маяки со строго периодическим сигналом. Но для пульсара PSR B1913+16 периодичность 17 раз в секунду искажалась сменяющими друг друга опережением и отставанием: цикл более раннего и более позднего прихода сигнала повторялся каждые 7 3/4 часа. Причиной этого должно было быть наличие второго тела и их совместное обращение вокруг общего центра масс; сдвиг сигнала по времени говорил, что орбита пульсара имела характерный размер менее диаметра Солнца, а значит, вторым телом не могла быть обычная звезда; случившееся везение, таким образом, состояло в обнаружении двойной системы из нейтронных звезд (вторая нейтронная звезда не проявляла себя как пульсар, по крайней мере ее излучение не было направлено к Земле). Массы всех нейтронных звезд должны лежать в некотором достаточно узком интервале, и, используя это знание вместе с анализом сигналов, удалось сделать заключения об орбите пульсара. Во-первых, поворот орбиты (памятные 43 угловые секунды в столетие для Меркурия) здесь составлял 4 градуса в год. А во-вторых, и это сейчас главное, имея представление об орбите и массе двух тел, из уравнений Эйнштейна можно оценить, сколько энергии уходит из такой системы в виде гравитационных волн. Отток энергии из двойной системы приводит к изменению орбит, а эти изменения отражаются в получаемом сигнале. Появляется возможность из (электромагнитных!) измерений узнать, действительно ли энергия уходит из системы гравитационно и уходит ли так, как предсказывают уравнения Эйнштейна. Ответ: да и да. Вся эта история производит на меня впечатление эффективным одновременным применением различных видов знания (и, конечно, методов наблюдений), позволяющих делать выводы о движении.

градуса в год движении

«Всплески» метрики могут не производить на материю большого впечатления после того, как они в виде гравитационных волн проделали путь в пару миллиардов световых лет; но в момент своего возникновения, скажем, при слиянии компактных объектов, они – полноправный участник событий. Максимального накала драма достигает при слиянии черных дыр: происходит перестройка геометрии, завершающаяся объединением горизонтов. Два куска искривленной пустоты, отрезанные от остального мира полупроницаемыми барьерами, становятся одним куском искривленной пустоты, отрезанным от остального мира полупроницаемым барьером: две черные дыры одновременно проглатывают друг друга. Часть энергии, которая расплескивается в виде гравитационных волн, совсем не мала даже по космическим стандартам: она может составлять несколько масс Солнца (как всегда в таких случаях, умноженных на c2); как мы обсуждали выше, открылось бы немало возможностей, если бы эту энергию можно было как-то собрать вместе, сохранить и пустить на хорошее дело. А при подчеркнуто неравных массах сливающихся черных дыр излучение гравитационных волн производит эффект типа отдачи/пинка на черную дыру, получившуюся в результате слияния, отчего она может приобрести скорость до ста или более километров в секунду, а при особо удачной ориентации осей вращения – до нескольких тысяч километров в секунду. Сама интенсивность испускания гравитационных волн зависит от ориентации осей вращения по отношению к орбите сближающихся по спирали навстречу друг другу черных дыр; все это тоже можно в принципе извлечь из формы регистрируемого сигнала.