Светлый фон
добавить

Тупики движения и конец времени. Падение в черную дыру (для простоты – черную дыру Шварцшильда) прекращается при достижении ее центра. После этого с тем, что туда падало, больше ничего не происходит – не в том смысле, что «ничего нового», а в том, что больше нет времени. Нет никакого способа продолжить время далее этого момента; его просто не существует.

прекращается ничего не происходит
Время заканчивается с попаданием в центр черной дыры

Время заканчивается с попаданием в центр черной дыры

Формально там, в центре, кривизна пространства-времени делается неопределенно («бесконечно») большой, и один из способов заявить это – сказать, что в центре черной дыры решению уравнений Эйнштейна нельзя придать смысл; точка, где смысл теряется, называется сингулярностью, и в центре черной дыры, стало быть, имеется сингулярность. Здесь, однако, есть знаменательная тонкость, потому что в такой точке смысл теряет метрика пространства-времени (абвгдежзик-таблица), но ведь именно метрика определяет геометрию и в силу этого является образующим элементом пространства-времени; поэтому если в какой-либо точке не существует никакой метрики, то саму эту точку нельзя включить в пространство-время. Наличие сингулярности в некоторой точке поэтому скорее следует воспринимать как отсутствие самой этой точки, ее «изъятие» из пространства-времени..

абвгдежзик Наличие отсутствие

В таких точках имеющаяся теория гравитации доходит до собственного отрицания. Но неизбежно ли их появление? Вопрос представляется сложным, в том числе и потому, что имеющаяся в нашем распоряжении теория оперирует с пространством-временем, и выводы ее должны быть сформулированы в терминах пространства-времени, а не точек, которые к нему не относятся. Замечательным образом, однако, внутри пространства-времени нашлись ресурсы, чувствительные к таким «изъятым» точкам. Это поведение геодезических: возможность или невозможность продолжения их в неопределенно далекое будущее. Будут ли запущенные по ним часы всегда тикать дольше любого наперед выбранного отрезка времени, или же некоторые геодезические куда-то «утыкаются» и время вдоль них кончается?[160] Оказалось возможным обсуждать сингулярности во внутренних терминах пространства-времени – как появление в нем семейств «утыкающихся» геодезических.

не относятся
Сингулярности – тупики геодезических, конец движения и времени

Сингулярности – тупики геодезических, конец движения и времени

В черной дыре Шварцшильда все геодезические, зашедшие под горизонт, утыкаются в ее центр. Но такая черная дыра – очень специальный пример пространства-времени. А если взять достаточно общее распределение материи, то можно ли подчинить его каким-то условиям, чтобы в пространстве-времени не было утыкающихся геодезических?