Светлый фон
ср cs

Подробнее в книге: А.С.Монин «Популярная история Земли», М., Наука, 1980.

А.С.Монин

 

То, что внутренняя часть ядра, несмотря на высокую температуру, является твердой, объясняется высоким давлением в недрах Земли: с ростом давления растет температура плавления. Например, для железа температура плавления увеличивается на 0,03 °C при увеличении давления на 10 атм. Оценим, при какой температуре будет плавиться железо в центре Земли. Если бы она была жидкой, то давление в недрах составляло бы более 105 атм. Это увеличит температуру плавления более, чем на 3000 °C. Температура же в ядре Земли оценивается в 3000–4000 К.

Источник: А.В.Бялко «Наша планета — Земля», Библиотечка «Квант» выпуск 29, М., Наука, 1989, стр.88–95.

А.В.Бялко

 

• ВОПРОС № 48: Почему звезды падают?

• ВОПРОС № 48: Почему звезды падают?

ОТВЕТ: Частицы межпланетной пыли, входя в земную атмосферу с большими скоростями, сгорают в ней, превращаясь в метеоры — кратковременные вспышки, которые проносятся по небу и исчезают, оставляя на несколько секунд узкий светящийся след. Этот след в просторечии называют «падающей звездой».

ОТВЕТ:

За сутки в атмосфере Земли вспыхивает примерно 108 метеоров ярче 5m. Метеоров, имеющих звездную величину ш, примерно в 2,5 раза больше, чем (m — 1)-й звездной величины.

m m

Очень яркие метеоры — болиды, могут наблюдаться и днем. Болиды сопровождаются иногда выпадением метеоритов. По происхождению и физическому строению большие тела, наблюдаемые как болиды, по-видимому, сильно отличаются от частиц, вызывающих метеорные явления.

Когда метеорная частица вторгается в земную атмосферу со скоростью 11–73 км/с, происходит энергичное взаимодействие между частицей и атмосферой. Это взаимодействие проходит для нас незамеченным, если частица настолько мала, что ее размеры много меньше длины свободного пробега молекул. В верхней атмосфере Земли частица размером 100 мкм и меньше имеет редкие столкновения с молекулами воздуха, которые приводят к замедлению ее движения и потере космической скорости еще на значительной высоте над поверхностью Земли, так как ее кинетическая энергия невелика.

Другое дело — вторжение более крупного метеорного тела, размером от 0,1 мм до 10 см. Такое тело способно увлечь воздушные массы, находящиеся на его пути, передавая им часть своего импульса и теряя кинетическую энергию, как и в предыдущем случае. Но теперь это происходит в несравненно более крупных масштабах. Так как скорость движения метеорного тела в атмосфере значительно превышает скорость звука, образуется ударная волна, за фронтом которой сильно повышается температура — до многих десятков тысяч градусов, так что воздух за летящим метеорным телом сильно ионизуется. С другой стороны, теряемая кинетическая энергия вызывает также и разогревание самого метеорного тела и испарение молекул и атомов с поверхности его. Происходит унос массы метеорного тела, так называемая абляция. При «сдирании» молекул происходит сильное разогревание метеорного тела с поверхности, и мы наблюдаем явление метеора. Вокруг него непрерывно образуется разогретое газовое облачко, частично ионизованное. Разумеется, газы отделяются от метеорного тела и располагаются вдоль его траектории в виде следа, наблюдаемого визуальным, фотографическим или радиолокационным методом, если у него достаточная яркость.