Планирование обработки потоков информации, идущей в реальном времени от быстротекущих процессов, ЗАСТАВЛЯЕТ использовать такой метод динамического распределения ограниченной памяти, который моделирует схему именно ЛИСТА МЁБИУСА, т. е. информация непрерывно пишется от начала выделенной области памяти до её конца, причем при достижении конца продолжение записи автоматически переадресуется на начало этой же самой области памяти, с записью поверх ранее записанной информации. При этом все обрабатывающие программы должны успеть обработать информацию до того как её затерли новые записи. Таким образом, конечная машина Шилова, получаемая из машины Тьюринга путем замены «потенциально бесконечной» ленты на конечную ленту Мёбиуса отражает факт ПРАКТИКИ построения программных систем для задач противоракетной обороны.
С. Шилов:
Японские ученые смогли получить в лабораторных условиях односторонние кристаллы в форме ленты Мёбиуса (http://mobius.kpv.ru/view/text.shtml?2291). Вот Вам и философский камень.
Андрей Св.:
Что же касается ЛИСТА МЁБИУСА, то я уже однажды подробно объяснял, что это такое, это вообще 4-мерный объект, а лента в машине Тьюринга это сугубо (и принципиально) одномерный объект. И если в листе Мёбиуса Вы используете только его замкнутость по одному (из 4) измерений, то он Вам не нужен, так как функционально ничем не будет отличаться от обычной закольцованной ленты двойной (по сравнению с полоской, вырезанной из листа Мёбиуса) длины.
С. Шилов:
Думаю, что речь должна идти об одностороннем кристалле в форме ленты Мёбиуса.
В конечно-конструктивистской машине физический процесс «переходит» в математический, математический — в физический, осуществляется троичный код, простое число фиксирует конкретную вещественность ноля. Таким образом, речь идет о программировании кристалла в форме ленты Мёбиуса. Так, в частности, Марсель Фогель, который был автором более ста важных патентов, включая изобретение флоппидискеты, прямо перед смертью высказал мысль, что природный кристалл может содержать несколько программ одновременно. По его мнению, кристалл в состоянии хранить столько программ, сколько граней находится на вершине кристалла.
В. Н. Левин:
Сергей Шилов, Меня смущает вопрос о несводимости качества к количеству. В связи с этим вопрос: как соотносится риторическая концепция ЧИСЛА к категории КОЛИЧЕСТВО. Это разные категории или одно и то же? Если одно и то же, то как быть с КАЧЕСТВОМ? Если разные, то чем отличается категория ЧИСЛО от категории КОЛИЧЕСТВО?