— Конечно же, вам посчастливилось открыть что-то интересное! — с надеждой воскликнул Олег.
— Да, кое-что раскопал. Вскоре после похода к Хинчину, задумавшись над методом спуска, то бишь понижения степени, я заметил прелюбопытную штуку. Оказывается, любую степень целого числа можно представить в виде суммы последовательных нечётных чисел. И количество слагаемых при этом равно основанию степени. Вот, например: 43 можно представить как сумму четырёх последовательных нечётных чисел: 43 = 13+15+17+19. Иначе говоря — 64. Другой пример: 54 = 121+123+125+127+129. Итого 625.
Сева скептически покачал головой.
— Да, а как узнать, с какого нечётного числа начинать?
— Это я тоже обнаружил. Надо основание степени возвести в степень, на единицу меньшую, затем вычесть отсюда основание и, наконец, прибавить единицу. Вот, скажем, чтобы возвести 5 в четвёртую степень, надо сперва возвести 5 в третью степень (то есть понизить четвёртую степень на единицу). 53 — это будет 125. Теперь вычтем отсюда основание, то есть 5, получим 120. Прибавим к 120 единицу, получим 121. Вот мы и нашли первое число, с которого надо начинать разложение степени.
— Я это правило знаю, — сказал Олег, — но только для квадратов чисел. Там всегда надо начинать с единицы. 52 = 1+3+5+7+9.
— Ну конечно, — подтвердила Таня, — ведь 5—5+1 = 1. Кроме того, это правило вытекает из формулы суммы арифметической прогрессии.
— Совершенно верно. И мне довелось обобщить это правило для любой степени, — сказал я. — Особенно любопытно получается разложение третьих степеней. Вот смотрите:
13 = 1
23 = 3+5
З3 = 7+9+11
43 = 13+15+17+19
и так далее…
— Да ведь отсюда легко получить знаменитое восточное равенство! — обрадовался Олег:
13+23+33+43+… = (1+2+3+4+…)2.
Не скрою, мне было очень приятно, что ребята сразу же с увлечением принялись блуждать в увлекательном лабиринте чисел.