Назовем формальный остов предложения его структурой. Назовем каждый член предложения классом слов, которые не только эквивалентны между собою, но и эквивалентны относительно структуры предложения, а структура предложения эквивалентна относительно каждого слова, входящего в данный класс. Тогда и всякое новое слово, дополняющее данную структуру предложения, и, тем самым, ее расширяющее, тоже может быть заменено какими угодно другими словами, эквивалентными между собою, эквивалентными данному дополнительному слову и, тем самым, эквивалентными относительно данного расширенного предложения. Тем самым, эквивалентность слов данной категории вполне может быть заменена эквивалентностью тех предложений, куда данное слово входит в качестве определенного члена предложения; и самый член предложения можно определить как класс слов эквивалентных относительно структуры предложения. А сама взаимная эквивалентность слов одной и той же категории или одного и того же класса может быть выражена при помощи эквивалентного положения этого класса в структуре эквивалентных между собою предложений. Другими словами, взаимная эквивалентность слов одной и той же категории или одного и того же класса, может быть определена и как эквивалентность его окружения в эквивалентных между собою предложениях.
Заметим также, что определение эквивалентности при помощи эквивалентного окружения дает возможность более глубоко понимать эквивалентные между собою слова. Стоит только представить себе, что не одна фраза эквивалентна относительно нескольких слов (как, например, «
Сразу же видно, что если под классом слов понимать семейство слов, то понятие семейства получает здесь гораздо более сильную структурную характеристику, чем в том случае, когда мы не выходили за пределы самого класса слов и рассматривали слова только с точки зрения отнесенности их к определенной категории.