Светлый фон

Интересен также другой вывод. Очевидно, 104–105 лет назад расширяющаяся оболочка была размером со звезду, т. е. еще только отделилась от ядра и начала расширяться. Значит, в космическом смысле планетарные туманности — очень молодые образования, они возникли совсем недавно, они моложе даже, чем сверхгиганты, возраст которых оценивают в 106–108 лет. Сверх того, планетарные туманности эфемерны, их жизнь очень коротка. Эти космические мотыльки «живут» не более чем 105–106 лет. Это не значит, однако, что их ядра также эфемерны. Это могут быть старые звезды, которые будут светить, заметно не меняясь, еще долго после того как их оболочка рассеется. Впрочем, если иногда межзвездная среда тормозит расширение туманностей или если ядро пополняет оболочку газом, жизнь планетарной туманности может затянуться.

Эволюция планетарных туманностей и их ядер

Эволюция планетарных туманностей и их ядер

Температуру ядер планетарных туманностей нельзя определить способами, применяемыми к обычным звездам, потому что линии их спектра часто либо ярки и широки либо плохо видны, либо совсем не видны. По распределению энергии в непрерывном спектре температуру горячих ядер тоже нельзя определять, так как это распределение в видимой области спектра мало меняется с температурой.

Занстра указал на возможный способ определения температуры ядра. Идея его состоит в том, что яркость туманности в видимых линиях спектра отвечает энергии в далеком ультрафиолетовом спектре ядра, — там, где кванты достаточно мощны, чтобы ионизовать атомы оболочки туманности и отрывать от них электроны при столкновении. Так, по яркости туманности в видимых линиях водорода можно определить яркость далекого ультрафиолетового участка спектра ядра с длиной волны короче 912 А (более длинноволновые кванты уже не могут ионизовать водород). Сравнение числа этих квантов с числом квантов в видимой области спектра ядра позволяет уже точно определить температуру его, если ядро излучает как абсолютно черное тело (для последнего распределение энергии во всем спектре в зависимости от температуры известно теоретически).

Недавно Г. С. Хромов использовал размеры зон ионизации разных атомов и из них получил значения энергии в трех точках ультрафиолетового спектра ядра. Исходя из этих значений энергии и применив формулу Планка, он получил температуру, характеризующую ультрафиолетовый участок спектра, около 150 000°. В более длинноволновой области спектр ядра представится формулой Планка для более низкой температуры. В 1965 г. сотрудница лаборатории автора Р. И. Носкова нашла хорошее соответствие видимой части спектра десятка ядер формуле Планка при температурах от 15 до 65 тыс. градусов.