Светлый фон
x y u u x y

Гравитация и форма мира

Гравитация и форма мира

В нашей Вселенной крупный объект – будь то звезда или планета – под действием гравитации принимает форму, близкую к шарообразной. В случае идеального тела, обладающего точной сферической симметрией, сила тяготения всегда направлена к центру шара, а гравитационный потенциал одинаков во всех точках поверхности. Такая конфигурация является устойчивой – во всяком случае, до тех пор, пока внутренняя часть тела достаточна прочна, чтобы выдержать вес его внешних слоев.

Во вселенной «Дихронавтов» аналогом сферической поверхности служит гиперболоид. Эта поверхность имеет две разновидности, которые называются однополостным и двуполостным гиперболоидами (соответственно красный и зеленый на рисунке ниже). Первая напоминает бесконечную колбу песочных часов; вторая – пару бесконечных чаш, направленных в противоположные стороны. На рисунке бесконечную поверхность, по понятным причинам, можно изобразить лишь частично.

 

Нам потребуется твердое, трехмерное тело, поверхность которого состоит из одного или нескольких гиперболоидов. В геометрии «Дихронавтов» такое тело будет обладать идеальной симметрией относительно своего центра – по аналогии с тем, как сфера обладает идеальной симметрией в геометрии Евклида: внешний вид тела не будет меняться при повороте вокруг его центра. (Если это сбивает вас с толку, ознакомьтесь с вводным разделом «Геометрия и повороты в пространстве «Дихронавтов»».)

Такое тело будет иметь бесконечные размеры и обладать бесконечным объемом и массой. Мы можем мысленно обрезать гиперболоиды, получив в результате некоторое тело конечных размеров; это, конечно же, нарушит его идеальную симметрию, однако в случае физических объектов точная симметрия встречается довольно редко. У бесконечных, идеально симметричных версий, впрочем, есть свои преимущества, поскольку их проще описать математически; более того, до тех пор, пока все локально измеримые физические величины (как то сила тяготения или создаваемое внутри тела давление) остаются конечными, мы можем даже допустить существование подобных объектов в гипотетической вселенной «Дихронавтов».

Закономерность, которой подчиняется сила тяготения в нашей Вселенной, как известно, выражается законом обратных квадратов: сила взаимодействия двух материальных точек пропорциональна их массам и обратно пропорциональна квадрату расстояния между ними. Во вселенной «Дихронавтов» вид этого закона не меняется – с той лишь разницей, что под «квадратом расстояния» теперь понимается x2 + y2 – u2, если эта величина положительна, и противоположная величина, u2 – x2 – y2, в противном случае.