4. Карно С. Размышления о движущей силе огня и о машинах, способных развивать эту силу. — М.: Государственное издательство, 1923.
5. Представление бейсбольного мяча в виде единичной массивной частицы без внутренней структуры — грубая аппроксимация этого самого мяча. Однако применение Ньютоновых законов к этой приближенной модели мяча дает точное классическое движение центра масс мяча. Для движения центра масс третий закон Ньютона гарантирует, что все внутренние силы уравновешивают друг друга, поэтому движение центра масс зависит исключительно от приложенных к мячу внешних сил.
6. В исследовании под заголовком «Как часто чихают и сморкаются нормальные люди?» (B. Hansen, N. Mygind, "How often do normal persons sneeze and blow the nose?" Rhinology 40, no. 1 [Mar. 2002]: 10–12) утверждается, что в среднем люди чихают примерно раз в сутки. Поскольку людей на Земле около 7 млрд, это дает нам 7 млрд чиханий в сутки на весь мир. В сутках 86 400 секунд, поэтому получаем около 80 000 чиханий в секунду в мире.
7. Данное мной описание годится для краткого обзора, но существуют экзотические физические системы, в которых для того, чтобы разрешить обратную последовательность событий, мы должны подвергнуть систему еще двум манипуляциям, помимо обращения времени: мы должны также заменить все заряды частиц на обратные (так называемое зарядовое сопряжение) и заменить роли лево- и правосторонности (так называемая замена четности). Законы физики, как мы их сегодня понимаем, неизменно уважают совокупную замену всех трех этих знаков, о чем свидетельствует утверждение, известное как CPT-теорема (где C означает charge conjugation, то есть зарядовое сопряжение, P — parity reversal, то есть смену четности, а T — time reversal, то есть обращение времени).
8. Для двух решек расчет выглядит так: (100 х 99)/2 = 4950; для трех так: (100 х 99 х 98)/3! = 161 700; для четырех: (100 х 99 х 98 х 97)/4! = 3 921 225; для пяти: (100 х 99 х 98 х 97 х 96)/5! = 75 287 520; для 50 решек расчет таков: (100!/(50!)2) = 100 891 344 545 564 193 334 812 497 256.
9. Точнее, энтропия есть логарифм числа членов в заданной группе. Эта важная математическая особенность гарантирует, что энтропия обладает разумными физическими свойствами (к примеру, когда две системы объединяют, их энтропии складываются), но при рассмотрении качественных свойств ее вполне можно проигнорировать. В главе 10 мы будем неявно пользоваться более точным определением, но пока хватит и этого.
10. В этом примере мы для простоты будем рассматривать только пар — молекулы H2O, плавающие в вашей ванной комнате. Мы не будем обращать внимание на воздух и другие вещества, которые там тоже присутствуют. Мы проигнорируем также внутреннее строение молекул воды и будем рассматривать их как бесструктурные точечные частицы. Когда речь пойдет о температуре пара, помните, что жидкая вода превращается в пар при 100 °C, но, если пар уже образован, его температуру можно поднять и выше этого значения.