h
Ниоткуда не следовавший постулат о порциях оказался самым фундаментальным законом, открытым Планком. Среди прочего он привел к радикальным изменениям представлений о движении.
*****
Квант действия. Постоянная Планка h оказалась входным билетом в описание мира, где многое – и в первую очередь, пожалуй, движение – устроено не так, как мы привыкли. Она – одна из Мировых постоянных нашей Вселенной (в том же клубе – скорость света c и постоянная гравитационного взаимодействия G), и ее появление в любом выражении – неоспоримое указание на его «квантовую природу». Мы достаточно подробно обсудим, что это значит, на следующих прогулках, а пока можно думать, что «квантовый» означает устройство вещей, в ряде случаев предполагающее наличие некоторых «порций» или «ячеек» – во всяком случае, слово «квант» было первоначально выбрано для указания на некоторое отмеренное количество чего-либо[193]. Самому Планку его постоянная требовалась для введения дискретных «делений» на шкале энергии. Насколько такая дискретность соответствовала природе вещей, а не была вычислительным приемом, выяснилось не сразу; на современников закон Планка слишком большого впечатления поначалу не произвел. В 1905 г. Эйнштейн предложил объяснение происходящего в совсем другой ситуации, постулировав, что свет поглощается только порциями энергии и каждая такая порция буквально равна выражению h · (частота); это относилось уже не к упаковке каких-то значений энергии в «ячейки», как вроде бы было у Планка, а к свойствам света: при заданной частоте не бывает порций света меньшего размера. Впоследствии (1921) эта идея Эйнштейна была удостоена Нобелевской премии, но в 1900-х гг. события развивались еще неспешно. Для самого Планка осознание истинного смысла достигнутого – принципиального разрыва между описаниями мира без буквы h и с ней – заняло без малого десять лет (понадобилось влияние Лоренца, Эренфеста и других, а также вклад Эйнштейна).
h
c
G
Насколько
только
h
h
Только в 1911-м постоянная h была «наконец» использована для вычисления энтропии газа – использована в качестве предустановленного размера «ячеек», которого не хватало Больцману, чтобы вычислить количество реализаций каждой макроскопической картины и найти абсолютное значение энтропии из формулы, которая теперь сопровождает его навсегда. Впечатляющим образом энтропия, найденная с использованием формулы Больцмана, совпала с экспериментально определенным значением, если в качестве фиксированного «размера» использовалась именно постоянная h; правда, это были ячейки не для энергии. Точное выражение для энтропии (результат вычисления «числа ячеек» и применения формулы Больцмана) носит имена своих первооткрывателей Тетроде и Саккура[194]; эксперимент по его проверке, который оказался осуществимым для паров ртути, потребовал и остроумия, и использования ранее полученных данных о нескольких других величинах. Установленное совпадение свидетельствовало о нескольких фактах сразу: формула Больцмана работает, а абсолютно точной делается тогда, когда отдельные состояния каждого движущегося атома/молекулы – это ячейки фиксированного размера h. Но только где или в чем эти ячейки?