Светлый фон
не должны

Атом не может быть организован как планетная система, сколь бы часто в массовой культуре ни рисовали что-то вроде ядра с мечущимися вокруг него шариками-электронами (рис. 10.1); антинаучная картинка настолько укоренилась в массовом сознании, что входит в эмблему МАГАТЭ (Международного агентства по атомной энергии). Ветви оливкового дерева на этой эмблеме изображены способом, который, возможно, не нарушает базисных представлений о семействе маслиновых, но «изображение» атома является вызывающим. Электроны – не шарики, какими они там нарисованы; и у электронов в атоме в действительности нет орбит – ни изящных, как нарисовал художник, ни каких-либо еще[201].

 

Рис. 10.1. Планетарная модель атома (шарики, летающие по изящным орбитам вокруг общего центра). Она не имеет отношения к устройству атома и поэтому не изображена

Рис. 10.1.

 

У электронов, как мы знаем с середины 1920-х гг., вообще нет траекторий.

*****

Природа не терпит траекторий. Орбита и вообще траектория – понятие отчасти умозрительное: движущиеся тела все-таки не оставляют за собой прочерченные линии. Точнее говоря, оставляют, когда для этого применяют специальные средства, скажем, на воздушных парадах (рис. 10.2). Тем не менее идея траектории хорошо передает все то, что мы понимаем под движением в пространстве. Она «прочерчивается» по мере того, как течет время. Каждая точка на траектории – мгновенное положение тела. В каждой точке траектории можно определить скорость, которую имеет движущееся тело в данной точке (и направлена она всегда по касательной). Нам потребуется говорить не о скорости, а о количестве движения (которое есть «скорость с учетом массивности» – просто произведение скорости на массу, если оставить в стороне эффекты специальной теории относительности). Я нарочно выскажусь еще раз в терминах количества движения: в каждой точке траектории четко определено количество движения, которым обладает движущееся тело, когда оно находится в этой точке.

 

Рис. 10.2. Линии, остающиеся в воздухе, дают представление о траекториях, которым следовали концы крыльев

Рис. 10.2.

 

А вот этого в природе быть не может. На фундаментальном уровне мира обнаруживаются непреодолимые препятствия к тому, чтобы положение и количество движения были точно определены одновременно. Поэтому и точные траектории отсутствуют. Траектория – лишь приближенное понятие, пригодное для всех окружающих нас тел во всех обычных вариантах их движений. Траекторию кончика крыла можно в принципе описать во много тысяч раз точнее, чем ее задает дымный след в воздухе, но, продолжая увеличивать точность, мы в конце концов упремся в предел. В свойства нашей Вселенной встроено фундаментальное ограничение на точность в связи с движением; актуальным и даже определяюще важным это ограничение становится для разнообразной мелочи типа электрона. С чем-то похожим – и по существу близким – мы уже сталкивались в связи с рис. 9.15. Там изображена плоскость, которую я на свой страх и риск назвал Плоскостью действия. Каждая точка на ней, как и на всякой плоскости, имеет две координаты. Одна из них показывает положение интересующего нас небольшого тела вдоль выбранного в пространстве направления, а другая показывает количество движения, которое имеет тело, когда проходит эту точку, – точнее, количество движения вдоль выбранного направления. На рис. 9.15 на Плоскости действия показаны прямоугольные площадки разных пропорций, но одной и той же площади. Совсем безобидное жульничество с моей стороны состоит в том, что на рис. 10.3 я повторил то же изображение Плоскости действия, но площадь всех прямоугольников установил равной не h, как раньше, а ħ/2 – такой она должна быть в задаче, которая сейчас обсуждается: о точности, с которой определена траектория. Буква ħ здесь – это, как мы упоминали мимоходом, постоянная Планка h, деленная на длину окружности единичного радиуса (2π). Поступать так с постоянной Планка h приходится столь часто, что специальное обозначение оказалось не лишним. Придумал его, по-видимому, Дирак, но никаких пояснений по поводу мотивировки символа ħ он не приводит[202]. Закон природы, иллюстрируемый рис. 10.3, состоит в том, что на Плоскости действия не существует позиционирования более точного, чем в пределах прямоугольника площадью ħ/2.