Светлый фон
вдоль h ħ ħ h π h ħ ħ

 

Рис. 10.3. Несколько прямоугольников на Плоскости действия, которые имеют одну и ту же площадь ħ/2. Они задают фундаментальные «ограничения на фокусировку», но не в обычном пространстве, а на воображаемой плоскости, объединяющей координату и количество движения вдоль нее

Рис. 10.3. ħ/

 

Можно представить себе программу рисования на компьютере с не совсем обычным инструментом «кисть» или «карандаш»: желая поточнее разместить, например, электрон на Плоскости действия, вы пытаетесь поставить точку штрихом покороче, но кисть не позволяет сделать отметку, которая имела бы площадь меньше заданной. Можно сделать прямоугольник очень узким по горизонтали, как самый левый из прямоугольников на рис. 10.3: тогда вы с неплохой точностью заявите пространственное положение электрона, но, увы, точность, с которой определено его количество движения, получится очень низкой. Если же настроить кисть так, чтобы ее узкий штрих с высокой точностью определял количество движения, то она непременно будет красить очень широко вдоль направления, определяющего положение в пространстве. Это и означает, что у электрона нет траектории, потому что траектория – это и положение, и количество движения. Заколдованные прямоугольники работают только для пар: положение вдоль выбранного направления – количество движения вдоль того же направления. Крест-накрест (скажем, положение вдоль направления 3 – количество движения вдоль направления 1) никаких ограничений нет.

и и

Что происходит?

Сначала о названиях. Власть заколдованных прямоугольников называется принципом неопределенности, часто – принципом неопределенности Гайзенберга. Слово «принцип» обычно означает, что это утверждение принимается за основное; «заколдованные прямоугольники», впрочем, можно вывести математически, приняв в качестве основного набор из нескольких других идей (сам Гайзенберг, впрочем, был склонен придавать своему принципу самостоятельное значение вне зависимости от других положений). Этот набор идей и составляет квантовую механику – основу нашего понимания мира на малых масштабах; а поскольку современные технологии часто опираются на управление происходящим именно на таких масштабах, это еще и основа технологий. В первоначальной постановке задачи требовалось разобраться с тем, как же электрон «движется» в атоме. Это понимание возникло в 1925–1926 гг., и первым к нему пришел Гайзенберг. Позже у квантовой механики появилось много других задач; в наше время часто говорят о квантовой теории.

квантовой теории