Светлый фон
вместо нулевыми колебаниями h

Мы, разумеется, радуемся дискретности: молекула, способная совершать колебания, поглощает и излучает свет на строго определенных длинах волн, а это дает способ выявлять наличие определенных молекул на сколь угодно большом удалении от наблюдателя, если только он обзавелся хорошими оптическими инструментами. Дискретные линии в спектрах играют роль «цифровой подписи» и атомов, и молекул, выдавая их присутствие. Правда, дискретность в мире молекул становится малозаметной, когда характерные переданные им энергии велики по сравнению с интервалом между разрешенными значениями энергии – что происходит при «высоких» (точнее, «не сверхнизких») температурах. Квантовые эффекты тогда «пропадают», примерно как отдельные песчинки перестают иметь значение при отгрузке песка в промышленном масштабе, когда песок «течет» как непрерывная среда. Зато при по-настоящему низких температурах квантовые свойства проявляют себя в полной мере, что открывает невиданные ранее возможности измерения тонких эффектов, связанных с квантовой дискретностью[220].

Колебания, которые нельзя совсем остановить, а можно только перевести в некоторый «нулевой» режим (с ненулевой, однако, энергией), не могут выглядеть как колебания шариков на пружинке. Чтобы это подчеркнуть, иногда говорят «квантованные колебания» или «квантовые колебания», но я буду чаще всего говорить просто «колебания», лишь время от времени напоминая, что они не без странностей. За следующим поворотом на этой прогулке они буквально обрушатся на нас, потому что невозможность покоя и квантовое устройство колебаний – явления, проявляющие себя не только для молекул, но и как фундаментальный эффект, лежащий буквально в основании мира. Но чтобы обсуждать его, нам потребуется еще одно рассуждение, которое соединяет принцип неопределенности с Самой знаменитой формулой и буквально открывает бездну.

нельзя

*****

Квантовая первооснова. Принципы организации природы действуют не в изоляции друг от друга, а составляют единую картину – уже по той одной причине, что работают в одной и той же Вселенной. Ситуации, в которых нам непонятно, как два разных принципа совмещаются, представляют собой движущую силу прогресса или по крайней мере постоянное напоминание, что прогресс (был бы) желателен; дежурный пример – квантовая гравитация, т. е. соединение идеи искривленного пространства-времени с квантовыми концепциями; непонятно, как они работают вместе. На этой «квантовой» прогулке мы деликатно не будем даже вспоминать про общую теорию относительности. Зато со специальной теорией относительности все совсем неплохо: за два с небольшим десятилетия после создания квантовой механики, с перерывом на Вторую мировую войну, было достигнуто понимание, как совместить квантовые принципы с принципом относительности. Это понимание с тех пор углублялось по мере своего распространения на новые аспекты реальности, открываемые в экспериментах. Содержательная часть тут довольно сложна, но для наших целей достаточно взгляда с высоты птичьего полета.