Светлый фон
n n n n n n n

Появились прекрасные числа 1, 4, 9, 16 (следующее, очевидно, 25). Умножив каждое из них на два, получим числа 2, 8, 18, 32. Как мы только что видели, они же – длины периодов в Периодической таблице (2, 8, 8, 18, 18, 32, 32). Но почему умножение на двойку? Дело выглядит так, как будто возможных состояний для электронов в два раза больше, чем мы смогли найти до сих пор. Откуда они берутся? Если мы надеемся объяснить Периодическую таблицу элементов исходя из устройства атома, этот вопрос надо как-то решить. Решим, но сначала немного отдохнем от атомов.

*****

Неугомонные колебания. Несколько неожиданное, но вообще-то почти очевидное следствие из принципа неопределенности состоит в том, что невозможен покой. Покоя не бывает просто потому, что он означал бы определенное положение при определенном количестве движения (а именно нулевом).

Невозможность покоя порождает особый вид «движения», который нельзя отобрать у системы; оно входит в способ ее существования. Такое положение дел особенно выразительно проявляется во всем, что способно совершать колебания («дрожания», или «шатания», или «качания» туда-сюда). А способность эта распространена чрезвычайно широко, потому что присуща всем устойчивым образованиям. Сама идея устойчивости в том и состоит, что система возвращается в прежнее состояние, когда на нее воздействует что-то не слишком разрушительное: в макромире высокие здания (не говоря уже о деревьях) качаются на ветру; то же самое делают крылья самолета в полете; пол, по которому вы ходите, в некоторой степени поддается давлению, а потом возвращается в прежнее состояние (а если не возвращается, то вы, похоже, сильно затянули с ремонтом); в мире малого атомы, соединенные в молекулы, испытывают воздействие соседей, которые вообще-то могли бы эту молекулу разрушить, но в подходящем диапазоне условий молекула себя сохраняет, несмотря на получаемые извне «пинки». Показательный пример колебательных систем – молекулы, образованные из двух атомов[219]. Отличительная черта колебательных систем – энергетическая яма вроде показанных на рис. 10.12: ее края не выполаживаются, как в атоме, а, наоборот, уходят неопределенно высоко вверх. Для молекул и других подобных образований такая картина является идеализацией: в реальности стенки имеют конечную высоту и, скажем, разрушение молекулы можно интерпретировать как преодоление стенок посредством переползания через край. И тем не менее такие идеализированные энергетические ямы находят широчайшее применение при описании природы.