Гармоническое среднее всех простых чисел ГСВПЧ = Npp/4
(1/p (1) +1/p (2) +…1/p (n-1) +1/p(n) = 4.
Сумма величин, обратных всем простым числам, равна 4. Это и есть существо так называемой четырехмерности мира (Вселенной). Удивительные свойства кватерниона Гамильтона свидетельствуют именно о изложенной выше структуре мира как структуре числового ряда, формирующей точку, линию, поверхность, тело.
В.Н. Левин:
Анализ гипотез Шилова
Гипотеза 1. «Число простых чисел конечно»;
Гипотеза 2. «Сумма всех простых чисел равна квадрату числа всех простых чисел»
Допустим, число простых чисел конечно. Тогда сумма всех простых чисел равна «среднему» из них, умноженному на их количество. Выписывая ряд простых чисел и наблюдая поведение их «средней» величины, обнаруживаешь, что до 10-го простого числа «средняя» их величина меньше их количества, а после 10-го (число 23) — начинает, чем далее, тем более превосходить их количество: для первых 10-ти простых чисел их средняя величина равна 10,1;для первых 15-ти простых чисел их средняя величина равна 18, 86; для первых 20-ти простых чисел их средняя величина уже равна 28,5 и т.д. Объяснение этому факту в том, что, чем далее, тем простые числа встречаются все реже и реже, так что каждое очередное простое число УВЕЛИЧИВАЕТ среднюю величину предшествующего ряда. Чтобы «средняя» величина ряда простых чисел была равна их количеству, необходимо, чтобы начиная с простого числа «23» последующие простые числа располагались в числовом ряду РАВНОМЕРНО, т. е. чтобы среднее расстояние между ними не увеличивалось. Но тогда количество простых чисел будет, по мере перечисления целых чисел, нарастать БЕСКОНЕЧНО, что противоречит Гипотезе 1. Если же Гипотеза 1 верна, то нарастание «средней» величины простого числа существенно обгоняет нарастание количества простых чисел, откуда следует, что сумма всех простых чисел как произведение их «средней» величины на их количество в пределе, существенно больше, чем квадрат количества простых чисел, т. е. Гипотеза 2 неверна.
Итак, я провел эмпирическое исследование: суммировал ряд простых чисел и делил промежуточные суммы на количество чисел, в них включенных. Например, первые 10 простых чисел:1,2,3,5,7,11,13,17,19,23 — в сумме дают 101, средняя величина равна 10,1, что примерно равно 10; Первые 20 простых чисел: 1,2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67 — в сумме дают 569, средняя величина равна 28,45, что существенно больше, чем 20 и т.д. Отсюда эмпирический вывод: сумма всех простых чисел (если число их конечно), равная очевидно, произведению их среднего арифметического на их количество, существенно превосходит квадрат количества простых чисел, чем опровергается Гипотеза 2.