Сергей Шилов, Вы пишите: «Вероятно, необходима ГИПОТЕЗА 3: Ближе к «концу» числа простых чисел они начинают вести себя симметрично «началу», т.е. встречаться все чаще.
Гипотеза 3 — это очень смелая и любопытная гипотеза. Она действительно «спасает» ситуацию. Но подлежит ПРОВЕРКЕ, т. е. критическому исследованию.
К Гипотезе 1. О конечности количества простых чисел. Фактически это гипотеза о конечности мира, о конечности числа чисел вообще.
К Гипотезе 3. О симметричности распределения простых чисел в ряду целых чисел. Первые простые числа идут подряд друг за другом: 1, 2, 3.
В парадигме конструктивистской математики можно утверждать:
Тезис 1. Для достаточно большого целого числа НЕВОЗМОЖНО проверить (доказать) свойство его делимости на любое другое число, кроме самого на себя, следовательно, мы должны считать его простым ПО ОПРЕДЕЛЕНИЮ. В этом смысле ВСЕ ДОСТАТОЧНО БОЛЬШИЕ ЧИСЛА — ПРОСТЫЕ, не делимы ни на одно число, кроме самих себя. В частности, они в этом смысле также идут подряд как и ПЕРВЫЕ простые числа, ― что соответствует Гипотезе 3 Шилова.
Далее, выдвигаю тезис Левина.
Тезис 2. Для любых двух достаточно больших целых чисел невозможно проверить (доказать) их отличие друг от друга, т. е. мы должны по определению считать их РАВНЫМИ друг другу.
Отсюда следует: Тезис 3. (Расширенная Гипотеза Шилова) Множество целых чисел открытое, но конечное. Последние из них недостижимы человеческим счетом, равны друг другу (неотличимы друг от друга) и являются простыми.
Михаил М., Вы пишите: «Спекуляции вещь увлекательная, но, насколько мне известно, с 1970 г. известны полиномы, генерирующие все простые числа, их чего тривиально следует бесконечность их числа»
В аксиоматике конструктивистской математики данное «тривиальное» следствие недопустимо (запрещено).
EEV, Вы критикуете тезис Шилова «бесконечное множество перемноженных простых чисел, к которому была бы добавлена единица» таким образом: «Указанное Вами понятие не есть число, поэтому “простым числом” оно быть не может». Справедливое замечание. Но я бы переформулировал его так: «Указанное произведение невозможно».
Михаил М:
В.Н. Левин, Сергей Шилов, господа, хотел бы сообщить, что в инете встречаются выпускники кафедры матлогики МГУ, заведующий которой А. А. Марков и основал конструктивное направление математики. Вам что нормальный алгорифм (А.А.Марков настаивал на таком спеллинге) нарисовать для проверки делимости любой пары натуральных чисел? Бесконечность числа простых чисел легко доказывается и в обычной, и в конструктивной математике, причем без всяких Гильбертов и порождающих полиномов.