Светлый фон

 

В.Н. Левин:

 

Самое старое известное доказательство бесконечности простых чисел было дано Евклидом в «Началах» (книга IX, утверждение 20). Его доказательство может быть кратко воспроизведено так. Представим, что количество простых чисел конечно. Перемножим их и прибавим единицу. Полученное число не делится ни на одно из конечного набора простых чисел, потому что остаток от деления на любое из них даёт единицу. Значит, число должно делиться на некоторое простое число, не включённое в этот набор.

Евклид, я считаю, должен из своего рассуждения сделать вовсе не тот вывод, который он сделал (будто множество всех простых чисел — бесконечно). Свой вывод — я берусь откорректировать Евклида — я привожу ниже.

За основу беру только что указанный текст Евклида, добавляю и выделяю слова, корректирующие ход ЕГО мысли и получаю следующее:

«П Р Е Д С Т А В И М, что количество простых чисел конечно. (ПРЕДСТАВИМ себе их ВСЕ). Перемножим (ВСЕ, ПРЕДСТАВЛЕННЫЕ конечным набором простые числа) и прибавим (к ВООБРАЖАЕМОМУ результату) единицу. Полученное число не делится ни на одно из (ПРЕДСТАВЛЕННОГО) конечного набора простых чисел, потому что остаток от деления на любое из них даёт единицу. Значит, полученное число должно делиться на некоторое простое число, не включённое в этот (ПРЕДСТАВЛЕННЫЙ) набор (например, хотя бы на самое себя, если ни на одно другое число оно не делится)».

Внимание! А теперь финальный вывод:

Следовательно, то простое число, на которое должно делиться полученное число, не входит в ранее ПРЕДСТАВЛЕННЫЙ набор ВСЕХ простых чисел. Следовательно, ПРЕДСТАВИТЬ ВСЕ простые числа одним набором НЕЛЬЗЯ! И ВСЁ. Конец вывода.

В откорректированном рассуждении, в отличие от оригинала, я опровергаю не утверждение о конечности множества простых чисел, а мнение о возможности П Р Е Д С Т А В И Т Ь такое множество конечным, о КОРРЕКТНОСТИ такого представления. Согласитесь, что разница в выводах действительно ПРИНЦИПИАЛЬНА!

Этим ИЛЛЮСТРИРУЕТСЯ ВОЗМОЖНОСТЬ ПАРАДИГМЫ МЫШЛЕНИЯ — той, к которой призывает Сергей Шилов, критикуя сложившуюся парадигму, в которой: «Доказательство… на деле есть [ЛИШЬ] спекулятивная связь представления, находящегося в “начале” “доказательства” как некоторой техники мышления, с представлением, находящимся в “конце” такого “доказательства”, — это показ (самопоказ) представления, в котором представление самоутверждается, демонстрирует себя как истинное. Дело доказательства как дело поиска истины в таком самопоказе представления предано забвению».

 

Михаил М., Вы пишите: «бесконечность числа простых чисел легко доказывается и в обычной, и в конструктивной математике». Если Вы учились у самого Маркова, ДОКАЖИТЕ бесконечность числа простых чисел в логике конструктивистской математики, т. е. не пользуясь методом «от противного», в основе которого лежит «закон исключенного третьего»!!!