x
k
или его некоторому алгебраическому расширению
В действительности же Гильберт использовал эту теорему как вспомогательное средство для своих исследований по инвариантам. Так как нам приходится иметь дело только с полной линейной группой, мы будем рассматривать только однородные инварианты, не оговаривая этого особо. Отбросим константы (инварианты степени 0). Предположим, что мы нашли ? непостоянных инвариантов J1, ..., J? таких, что каждый другой такой же инвариант обращается в нуль на множестве их общих нулей. Разумеется, в качестве таких инвариантов можно взять базис идеала, порождённого всеми непостоянными инвариантами, но мы сможем найти их и значительно более дешёвым способом. Действительно, одно красивое рассуждение Гильберта показывает, что если существует непостоянный инвариант, не обращающийся в нуль в данной точке x = x0, то существует и другой инвариант с тем же свойством, вес которого не превосходит некоторой априорной величины W (например, W = 9n(3n + 1)8 для инвариантов тернарной формы степени n). Таким образом, J1, ..., J? могут быть выбраны из инвариантов, вес которых не превышает W, и, таким образом, поддаются явному алгебраическому построению.
J
J
x
x
W
W
n
n
n
J
J
W
Когда Гильберт опубликовал своё доказательство конечности базиса идеала, формалист Гордан, считавшийся в то время королём инвариантов, воскликнул: «Это — не математика, это — теология!» Гильберт всю жизнь протестовал против недооценки доказательств существования, составляющих «теологию». Однако мы видели, как более детальное исследование позволило ему удовлетворить конструктивистским требованиям Гордана. Применяя процесс Кэли и свою Nullstellensatz, ему удалось показать, кроме того, что каждый инвариант J является целой алгебраической (но не всегда рациональной) функцией от инвариантов J1, ..., J?, которая удовлетворяет уравнению
J
алгебраической
рациональной