23. В примечании 9 к главе 2 я объяснил, что энтропию системы правильнее определить как натуральный логарифм числа доступных квантовых состояний. Так что, если некая система обладает энтропией S, число таких состояний равно eS. Если предположить, что система проводит почти равное время в любом из микросостояний, совместимых с ее макросостоянием, то вероятность P флуктуации от начального состояния энтропии S1 к состоянию конечной энтропии S2 задается отношением числа микросостояний, связанных с S
Поскольку энтропия ванны меняется вслед за числом частиц, падение D, по существу, равно M/T и, соответственно, вероятность равна примерно e — M/T. За особенно наглядным примером мы можем обратиться к очень отдаленному будущему и взять T равным температуре термальной ванны, возникающей вокруг космологического горизонта, около 10–30 K, что составляет примерно 10–41 ГэВ (где ГэВ, гигаэлектронвольт, примерно равен энергии, эквивалентной массе протона). Поскольку мозг содержит около 1027 протонов, M/T равно примерно 1027/10-41 = 1068. Таким образом, вероятность спонтанного возникновения мозга примерно равна e-1068. Время, необходимое для получения разумного шанса на реализацию такого редкого события, пропорционально 1/(e—1068), а именно e1068, что в данной главе для простоты мы аппроксимируем как 101068.
24. Хотя время вполне может быть неограниченно, существует естественный и при этом конечный релевантный масштаб, известный как «время возвращения». Речь о нем пойдет в примечании 34, так что здесь достаточно сказать, что время возвращения настолько велико, что число случаев возникновения больцмановских мозгов, прежде чем мы достигнем этого предела, будет — несмотря на крохотную частоту их образования — огромным.
25. Особенно усердный читатель заметит, что мы неявно привлекаем принцип безразличия, описанный в примечании 8 к главе 3. То есть, когда я рассматриваю происхождение своего мозга, я считаю равновероятными все воплощения, обладающие одинаковой физической конфигурацией. Поскольку почти все они должны быть образованы в больцмановской манере, очень маловероятно, что обычная история, которую я рассказываю о том, как возник мой мозг, верна. Однако, как в примечании 8 к главе 3, можно возразить против применения принципа безразличия в ситуациях, нисколько не похожих на те, в которых этот принцип эмпирически проверен (бросание монет и костей, а также огромное число случайных ситуаций, с которыми мы сталкиваемся в повседневной жизни). Тем не менее многих ведущих космологов такой подход не устраивает, так что они рассматривают описанную мной в этой главе загадку больцмановского мозга вполне серьезно.