не
в среднем
в среднем
Рис. 9.3. Траектории случайных блужданий на плоскости. Длина каждого шага равна 1. Слева: три блуждания по 300 шагов каждое. Справа: случайное блуждание в 5000 шагов
Рис. 9.3.
Слева:
Справа:
Одна проблема с пинками, которые маленький «предмет» получает от молекул, оставалась нерешенной до начала XX в., – это несоответствие масштабов. Размер пыльцы (и, видимо, «крошечных осколков египетского Сфинкса») – около одного микрона, т. е. 10–4 см, а характерный размер молекулы воды, как мы сейчас знаем, 10–8 см, т. е. в 10 000 раз меньше (сами броуновские частицы видны в микроскоп, а молекулы/атомы нет). Даже при отсутствии ясных данных о размере атомов и молекул было понятно, что они много меньше, чем частицы, которым они передают свое движение. Кроме того, число столкновений, которые молекула испытывает каждую секунду (скажем, 1012 в воде), никак не соответствует возможностям человеческого глаза, который способен замечать движение лишь в интервале не менее 1/30 секунды (и микроскоп здесь ничем не поможет). Ответ появился в статье Эйнштейна, вышедшей в мае 1905 г. – примерно за месяц до статьи о теории относительности. Наблюдаемые смещения броуновской частицы – это итог сложения множества одиночных воздействий. Из механизма случайных блужданий удалось вывести, что все то огромное количество элементарных столкновений, которые претерпевает броуновская частица, приводит к ее среднему смещению на несколько микрон при времени наблюдения порядка минуты. Для того чтобы в моей модели на рис. 9.3 описать нечто похожее на наблюдаемое броуновское движение, следует, во-первых, продолжить его не до 5000, а до 500 000 000 000 шагов, а затем, чтобы смоделировать картину, наблюдаемую в микроскоп, сгладить всю мелкую рябь: для начала представить всю суету, происходящую на рис. 9.3 справа, в виде двух «больших» скачков, а затем произвести подобное огрубление еще много раз. Элементарных шагов в микроскоп не видно, а совершаются они один за другим так часто, что с нашей точки зрения воздействия на броуновскую частицу можно считать непрерывными. Она исполняет неклассический танец, демонстрируя совсем неньютоновский тип движения, у которого толком нет скорости, а есть только средние смещения. Такое понимание представляло собой расширение взглядов на движение вообще.
много
наблюдаемое
много
Реальное движение броуновской частицы отражает некоторые ключевые черты поведения окружающих ее молекул. Среднее смещение частицы зависит от температуры, а также от вязкости жидкости и (технический, но важный момент) от числа атомов/молекул, определяемого специальным образом (это уже встречавшееся нам число 6,022… × 1023). Возможность определить это число, хорошо известное по своим разнообразным проявлениям, из наблюдения за броуновским движением заметно повлияла на преодоление скепсиса в отношении атомов[166]. Заодно Эйнштейн установил связь между случайными блужданиями и диффузией. Траектории на рис. 9.3 (особенно справа, где блуждатель делает больше шагов) не случайно напоминают «растворение» чернил в воде или молока в кофе. В основе диффузии лежат те же механизмы раздробленного движения и случайных блужданий, так что в результате тот же закон квадратного корня из времени описывает средние показатели того, как далеко распространилось в воде облако чернил[167].