Светлый фон
чувствует F C F С K C K F

 

Рис. 9.4. Одна и та же температура, представленная в градусах Фаренгейта и Цельсия, в кельвинах и в миллиэлектронвольтах, непосредственно выражающих среднюю энергию движения одной молекулы: 77 ℉ = 25 ℃ = 298,15 K = 38,539 мэВ

Рис. 9.4.

 

При нуле градусов Цельсия средняя энергия движения одной молекулы равна числу, которое едва ли многое сообщает (5,657 зДж), однако более выразительные числа получаются, если вместо энергии движения поинтересоваться скоростью. Средние скорости, правда, зависят от массы молекулы: чтобы легкой и тяжелой молекулам «набрать» одну и ту же энергию движения, легкой приходится двигаться быстрее. При 0 ℃ молекулы азота в воздухе (те самые 78 % по объему) движутся со средней скоростью 493 м/с, а чуть более тяжелые молекулы кислорода (21 % объема воздуха, без которого для нас нет жизни) – со средней скоростью 461 м/с. Наконец, молекулярный водород, который почти в 16 раз легче кислорода (и который присутствует в атмосфере в «следовых», т. е. совершенно ничтожных, количествах), движется со средней скоростью 1904 м/с. Нагрев от 0 до 100 ℃ приводит к тому, что эти средние скорости увеличиваются до 576, 539 и 2148 м/с соответственно[169].

 

Рис. 9.5. Прыжок со специальным снаряжением с высоты около 38 км. Испытателю предстоит падение в более холодные слои атмосферы, чем тот, где находится аэростат; более теплые встретятся только ближе к поверхности

Рис. 9.5.

 

Если бы «молекулы воздуха» и могли заскучать в какой-нибудь банке, где ничего не происходит, то атмосфера Земли предоставляет им немало шансов развлечься из-за того, как температура изменяется с высотой над земной поверхностью. Температура на поверхности достаточно сильно различается в разных точках, но на границе тропосферы и стратосферы (в среднем около 12 км вверх, что, впрочем, означает от 9 км над полюсами до 17 км над экватором) она держится на уровне –60 ℃ или –70 ℃. Маршруты дальнемагистральных пассажирских самолетов проходят чуть ниже, и командир корабля обычно сообщает о температуре за бортом около –50 ℃. Граница тропосферы не задается в виде математически точно определенной поверхности, это до некоторой степени умозрительная конструкция типа Восточно-Сибирского моря, но мысленно отделять тропосферу от лежащей над ней стратосферы имеет смысл уже по той причине, что в стратосфере неожиданно делается теплее: от ее нижней границы на уровне 12 км до верхней границы (50–55 км) температура возрастает от –60 ℃ до «небольшого минуса», приближающегося снизу к 0 ℃. Это не значит, что там можно находиться (рис. 9.5); но это в точности отражает ситуацию с движением молекул, средние скорости которых в верхней части стратосферы оказываются такими же, как в мягкую зиму вблизи поверхности Земли. Источник разогрева – ультрафиолетовая составляющая солнечных лучей, которая поглощается молекулами; в результате основная доля ультрафиолета не достигает земной поверхности, а молекулы там наверху разгоняются. Еще выше, в мезосфере (до 80–85 км), температура снова падает до –90 ℃ или даже сильнее. Но это еще не конец слегка парадоксальной истории. В лежащей еще выше термосфере (простирающейся, уже несколько условно, до высот 500–1000 км, в сильной зависимости от солнечной активности) температура поднимается до 1500 ℃ или даже 2000 ℃ – до полутора или двух тысяч, здесь нет опечатки в виде лишнего нуля; впрочем, температуры сильно (на сотни градусов) различаются днем и ночью, а также в период высокой и низкой солнечной активности. Термосфера – выразительный пример того, что температура выражает только среднюю энергию движения, но не сообщает больше ничего: молекулы (в основном уже атомы) в термосфере пролетают между столкновениями друг с другом целые километры, поэтому «согреться» там решительно не обо что. В пределах термосферы летает немало космических аппаратов, включая Международную космическую станцию (высота несколько более 400 км над земной поверхностью); трение об эти остатки атмосферы – второй по значимости фактор, после сплюснутости Земли у полюсов, влияющий на их орбиты (см. прогулку 4). Молекулы воздуха летают там и правда быстро: при 2000 ℃ атомарный кислород имеет среднюю скорость 1882 м/с, а атомарный водород – среднюю скорость, близкую к первой космической.