Светлый фон
очень маленькие состояния

Молекулы кофе, изолированного от окружающего мира, «сами» выбирают для себя состояния из числа доступных. Доступно многое, но не все: недоступны состояния, отвечающие пребыванию вне термоса; определенно недоступны, кроме того, состояния со слишком большой энергией – большей, чем полная энергия, фиксированная с самого начала. В пределах же доступного молекулы делят между собой состояния на основе принципов свободы (можно все, что не запрещено) и равенства (различные возможности равновероятны). И, пожалуй, братства, хотя прямо сейчас это менее существенно: все молекулы одного вида полностью взаимозаменяемы. Каждая молекула непрестанно меняет одно доступное состояние на другое, но при этом мы можем наблюдать одну и ту же макроскопическую картину, потому что различные способы, которыми молекулы занимают доступные состояния, для нас неразличимы. Правда, и наша жизнь не совсем скучна, потому что макроскопических картин тоже немало, хотя и несравнимо меньше, чем вариантов «раздачи ролей» молекулам: мы готовы различить, например, картину, где молекулы у правой стенки термоса в среднем имеют большие энергии, чем молекулы у левой стенки. Это выражается в том, что температура кофе в двух точках различается, скажем, на 1 ℃; или, если у вас есть подходящие инструменты, на 0,1 ℃. У каждой такой картины имеется множество реализаций – множество разных вариантов расселения молекул по состояниям, подчиненных необходимым ограничениям (чтобы движение молекул, например, «поддерживало» заданную разность температур). И тут молекулы «наносят ответный удар» за то, что мы не вникаем в подробности. Их оружие – число реализаций каждой из макроскопических картин. Число реализаций огромно для каждой макроскопической картины, но для некоторых картин оно «еще огромнее» или даже «намного огромнее», чем для других. Только из-за того, что у них больше реализаций, такие картины встречаются (намного) чаще; а мы в результате наблюдаем необратимое развитие событий – смешивание, выравнивание температур и т. п. При растворении капли чернил в воде (рис. 9.7) имеется намного больше таких способов расселить молекулы по состояниям, что мы наблюдаем картину «чернила растворены в воде», чем способов, которые дают картину «чернила сконцентрированы в виде капли». При смешивании двух газов все молекулы газа 1 исходно находятся в одной части, а все молекулы газа 2 – в другой части объема, разделенные перегородкой. После того как перегородку убирают, у молекул обоих газов появляется больше состояний. Доступ к большему числу состояний дает большее число возможных реализаций для макроскопической картины «два газа перемешаны в полном объеме». Молекулы просто разбегаются по всем доступным для них состояниям и беспрестанно меняют эти состояния, а у нас перед глазами оказываются те макроскопические картины, которые с большим отрывом лидируют по числу реализаций, в результате чего мы и видим необратимые процессы: температуры выравниваются, чернила растворяются в воде, газы перемешиваются.