Светлый фон
только тремя колоссально k очень c G атома

Чтобы получить энтропию черной дыры, площадь горизонта надо выразить через число, показывающее, сколько раз на этой воображаемой поверхности укладывается квадрат невообразимо малого размера; неудивительно, что энтропии черных дыр оказываются колоссальными. Полюбившаяся нам черная дыра на рис. 7.15 не может похвастаться большой площадью поверхности горизонта: в одном квадратном метре уместится 40 таких горизонтов и почти половина еще одного. Но эта малая площадь выражается в терминах Специальной площади колоссальным числом порядка 1067. Для черной дыры, имеющей массу Солнца, площадь ее горизонта – уже 1077 повторений Специальной площади. Эти огромные числа – те самые X, которые при обсуждении количества незнания на уровне молекул выглядели короткими числами: скажем, из трех знаков, а не из семидесяти семи.

X короткими
В черных дырах – основная энтропия Вселенной

В черных дырах – основная энтропия Вселенной

Черные дыры несут в себе основное энтропийное содержание Вселенной. Продолжая в самом общем виде идеи Больцмана, мы думаем, что с высокими значениями энтропии как-то связаны степени свободы – тем или иным образом реализованные состояния чего-то («квантовой гравитации»), но мы не знаем, каковы они. Наличие Специальной площади само по себе не означает, что пространство-время составлено из каких-то кубиков; мы просто не знаем, о чем вообще можно говорить на столь малых масштабах, а «потыкать» туда нам нечем – не только потому, что фотонов (света) с подходящей длиной волны нет под рукой, но и по более фундаментальным причинам: такой фотон оказался бы носителем столь большой энергии в столь малом объеме, что сам превратился бы в черную дыру. Специальная площадь, таким образом, указывает на грань, ниже которой заведомо не распространяются наши представления о пространстве-времени, да и движении, и эта грань – предельные по своей интенсивности проявления гравитации. Она работает там в квантовом режиме, а от его систематического понимания мы довольно далеки. В отсутствие каких-либо подробностей относительно происходящего там мы пытаемся получить подсказки от энтропии: опирающиеся на нее соображения вызывающе безразличны к деталям, а потому иногда позволяют заглядывать глубже, чем проникает взор, различающий подробности.

чего-то

На рубеже XX в. граница понятного мира проходила на 25 порядков выше – на масштабе, выражающем размер атома, и при невозможности «заглянуть внутрь» самая первая подсказка о неожиданном (квантовом!) укладе внутриатомной жизни также появилась не без помощи энтропии. «Энтропийные» соображения помогли угадать закон излучения – первый закон природы, отражающий квантовую природу мира. Чуть выше мы брали его взаймы, а сейчас наконец обсудим связанную с ним интригу по порядку. Закон носит имя своего первооткрывателя – Планка.