Светлый фон
ħ

В связи с «вращательными» состояниями электрона в атоме имеется небольшой номенклатурный курьез. До того как повсеместно распространились арабские цифры, во многих письменных языках буквам придавали числовые значения. В кириллице, например, аз имел значение 1, веди – значение 2, иже – значение 8 (а, скажем, мыслете – 40). Число , ответственное за интенсивность вращения, являет собой нечастый пример противоположной идеи: значение 0 называется буквой s. Не любой нуль, а только нуль числа , отвечающего за интенсивность вращения. Значение 1 называется буквой p, значение 2 – буквой d, а значение 3 – буквой f. Порядка в буквах не видно, поэтому первый вопрос к использованию этой схемы (а она используется): как продолжать? После f продолжают все-таки по алфавиту: значение = 4 назвали буквой g, значение 5 – буквой h и т. д. Источник этого казуса, разумеется, исторический: атомы посылают во внешний мир сигналы в виде линий своих спектров, которые надо было как-то классифицировать еще прежде, чем они получили объяснение исходя из того, что делают электроны. Буквы s, p, d, f означали sharp, principal, diffuse, fundamental. Стоит заметить, что классификация оказалась «правильной» в том смысле, что, когда была создана квантовая механика, за различными буквами обнаружились различные числа.

аз веди иже мыслете называется буквой а она используется sharp, principal, diffuse, fundamental
От «вращения» электрона в атоме осталось два целых числа

От «вращения» электрона в атоме осталось два целых числа

Нам осталось вспомнить про третью из величин в дружном коллективе – компоненту количества вращения (вдоль любого направления; от выбора направления ничего не зависит). Атому снова удается существовать только «в порядке исключения» – когда компонента количества вращения принимает специальные дискретные значения. И они совсем простые: ħ · (целое число), причем это новое целое – из ограниченного интервала. Оно традиционно обозначается буквой m. Самое большое возможное значение этого m равно , следующее в сторону уменьшения  – 1, потом  – 2; продолжая шагать вниз по целым числам, мы пройдем нуль и доберемся до – (отрицательные значения означают просто, что компонента направлена не «вперед», а «назад»). Здесь и надо остановиться. Для буквы m имеются только возможности из списка от (наибольшего) до (наименьшего) –.

любого ħ m m m

Как мы видим, чем больше энергия (чем больше номер n в списке разрешенных энергий), тем более разнообразна (в целом вообще-то скучноватая) жизнь электрона в атоме. Растущее число возможностей проиллюстрировано на рис. 10.9. Но это – все, что уравнение Шрёдингера без дополнительных накруток предоставляет электрону в атоме[214]. Финальное усложнение («с накрутками») еще появится и даже составит отдельную историю чуть дальше на этой прогулке, но общей картины это не меняет. Присутствие целых чисел в основе реальности довольно удивительно в сравнении с привычным миром, где целые числа встречаются только как количества предметов, тогда как в разнообразных явлениях, происходящих как рядом с нами, так и далеко во Вселенной, возможны совершенно любые значения скорости, плотности, температуры, энергии, напряженности магнитного поля и всего остального. Нет никакого механизма, в силу которого – например, для плотности – значение 1 (точно единица) было бы предпочтительнее, чем 0,9999836800451061 или 1,0000000000000001. Тем не менее именно целые числа (не приближенно, а в точности целые) встроены в самые главные для нас связанные системы – атомы.