Светлый фон
Период рефрактерности. периода абсолютной рефрактерности период относительной рефрактерности

16.4. Опишите изменения, происходящие в аксоне во время периода рефрактерности.

16.4. Опишите изменения, происходящие в аксоне во время периода рефрактерности.

Скорость проведения. В немиелинизированных аксонах (разд. 16.2), характерных для беспозвоночных, скорость распространения потенциалов действия зависит от сопротивления аксоплазмы вдоль аксона. Это сопротивление в свою очередь зависит от диаметра аксона — чем меньше диаметр, тем больше сопротивление. В тонких аксонах (<0,1 мм) большое сопротивление аксоплазмы влияет на проведение тока и уменьшает длину местной цепи, так что в нее включается только тот участок, который расположен непосредственно впереди потенциала действия. Эти аксоны проводят импульсы со скоростью около 0,5 м/с. Гигантские аксоны, типичные для многих червей, членистоногих и моллюсков и имеющие диаметр около 1 мм, проводят импульсы со скоростью до 100 м/с, оптимальной для передачи жизненно важной информации.

Скорость проведения.

16.5. Объясните, опираясь на сведения о сопротивлении аксоплазмы и местных токах, почему гигантские аксоны проводят импульсы с большей скоростью, чем тонкие нервные волокна.

16.5. Объясните, опираясь на сведения о сопротивлении аксоплазмы и местных токах, почему гигантские аксоны проводят импульсы с большей скоростью, чем тонкие нервные волокна.

У позвоночных большинство нервных волокон, особенно в спинномозговых и черепномозговых нервах, имеют миелиновую оболочку, образованную мембранами шванновских клеток (разд. 8.6.3). Миелин — вещество липидной природы, оно обладает большим электрическим сопротивлением и действует как изолятор подобно резиновому или пластиковому покрытию электрического провода. Суммарное сопротивление мембраны аксона и миелиновой оболочки очень велико, но там, где в миелиновой оболочке имеются разрывы, называемые перехватами Ранвье, сопротивление току между аксоплазмой и внеклеточной жидкостью меньше. Только в этих участках и замыкаются местные цепи, и именно здесь через мембрану аксона проходит ток, генерирующий следующий потенциал действия. В результате импульс перескакивает от одного перехвата к другому и пробегает по миелинизированному аксону быстрее, чем серия меньших по величине местных токов в безмиелиновом нервном волокне. Такой способ распространения потенциала действия, называемый сальтаторным (от лат. saltare — прыгать), может обеспечивать проведение импульса со скоростью до 120 м/с (рис. 16.6).

перехватами Ранвье