Светлый фон

Я думаю, что возможна исследовательская программа «Физика периода». Целью программы является исследование отношения 1/p, где р — простое число. Математики давно предполагают, что константное отношение длины окружности к ее радиусу есть следствие некоторого более глубокого арифметического отношения. В нашем исследовании мы исходим из гипотезы, что речь идет о том отношении, в котором запись числа формируется исходя из природы самого числа, из природы числового ряда. Мы исходим из того, что число само себя записывает (само себя считает, само себя вычисляет и не нуждается в «гипотезе бесконечности» — в бесконечном счете-счетности). И суть математической истины заключается в установлении соответствия «нашей» записи числа некоторой истинной записи числа. Истинная запись числа выражает его «физическое место» в континууме числового ряда. Число записывает, ограничивает свое собственное место, будучи конечным местом числового ряда.

Отношение 1/p (n), где р(n) — простое число в последовательности n простых чисел, имеет фундаментальное значение для экспликации истинной записи числа. В данном отношении запись числа проявляет себя в виде того обстоятельства, что результатом этого отношения является конкретная и весьма специфическая периодическая дробь. В ряде случаев период этой дроби содержит в себе количество цифр n, отличающееся от p на единицу p = n–1. Так, период 1/7 содержит 6 цифр, период 1/17 содержит 16 цифр; период 1/23 содержит 22 цифры; период 1/29 содержит 28 цифр. В ряде периодов других отношений 1/p количество цифр в наборе цифр периода также демонстрирует некоторое функциональное отношение. Возможно, что речь идет о некоторой прогрессии, величина шага которой есть переменная величина, изменяющаяся от одного отношения к другому.

Период дроби, являющейся результатом отношения 1/p (n), может быть поставлен в некоторое отношение к самому p (n) — отношение физической математики. КАЖДОМУ р (n) СООТВЕТСТВУЕТ КОНКРЕТНЫЙ ПЕРИОД 1/p (n).

Интересным представляется также параллельное исследование функции логарифма по основанию немнимой единицы (по основанию — корень квадратный из 2, первое иррациональное число в математике, обнаруженное в качестве длины диагонали единичного квадрата) для 10 в степени х. При изменении степени 10 на порядок (на единицу, 10,100,1000,10000…) — этот логарифм приближенно указывает на местность простых чисел в каждый десяток счета и при переходе от одного десятка к другому (10, 20, 30, 40 и т.д). Гипотеза состоит также в том, что функция немнимой единицы коррелирует с распределением простых чисел. Строение числового ряда из немнимых единиц и есть, собственно, говоря, материальное существование простых чисел.