Ball, W. W. R. (1892). Mathematical recreations and problems of past and present times. London: MacMillan.
Baltzer, R. (1885). Eine Erinnerung an Mobius und seinen Freund Weiske. Ber. Verh. K. Sachs. Ges.Wiss. Leipzig 37, 1–6.
Barabasi, A.-L. (2002). Linked: How everything is connected to everything else and what it means. Cambridge, MA: Perseus.
Barnette, D. (1983). Map coloring, polyhedra, and the four-color problem. Washington DC: Mathematical Association of America.
Barr, S. (1964). Experiments in topology. New York: Dover.
Baxter, M. (1990). Unfair games. Ureka: The Journal of the Archimedeans 50, 60–68.
Becker, J. C., and D. H. Gottlieb (1999). A history of duality in algebraic topology. In I. M. James (ed.), History of topology, 725–745. Amsterdam: North-Holland.
Bell, E. T. (1937). Men of Mathematics. New York: Simon and Schuster.
--. (1945). The development of mathematics. New York: McGraw-Hill.
--. (1987). Mathematics: Queen and servant of science. MAA Spectrum series. Washington DC: Mathematical Association of America.
Biggs, N. (1993). The development of topology. In J. Fauvel, R. Flood, and R. Wilson (eds.), Mdbius and his band: Mathematics and astronomy in nineteenthcentury Germany, 105–119. New York: The Clarendon Press, Oxford University Press.
Biggs, N. L., E. K. Lloyd, and R. J. Wilson (1986). Graph theory 1736–1936. Oxford: Clarendon Press.
Blaschke, W. (1921). Vorlesungen uber Differentialgeometrie. Berlin-Heidelberg: Springer-Verlag.
Bonnet, O. (1848). Memoire sur la theorie generale des surfaces. J. Ec. Polytech. 19, 1-146.
Boyer, C. B. (1951). The foremost textbook of modern times. Amer.Math. Monthly 58, April, 223–226.
Boyer, C. B., and U. Merzbach (1991). A history of mathematics (2nd ed.). New York: John Wiley & Sons.
Boyle, R. (1937). The sceptical chymist, with an introduction by M. M. Pattison Muir. Everyman's Library. London: J. M. Dent and Sons.
Bradley, R., and E. Sandifer (eds.) (2007). Leonhard Euler: Life, work and legacy. Vol. 5 of Studies in the history and philosophy of mathematics. Amsterdam: Elsevier.
Brahana, H. R. (1921). Systems of circuits on two-dimensional manifolds. Ann. Of Math. (2) 23 (2), 144–168.
Breitenberger, E. (1999). Johann Benedict Listing. In I. M. James (ed.), History of topology, 909–924. Amsterdam: North-Holland.