Светлый фон
водопроводная компания холера

В то время на выводы доктора Сноу обратили внимание лишь немногие. Свои результаты он опубликовал в брошюре, изданной за его собственный счет: по рукам разошлись только 56 экземпляров этой брошюры. В наше время эпидемиологи рассматривают ее как основополагающий документ для всей своей дисциплины. Она показала, что старомодное расследование «на подметках ботинок» (эту фразу я позаимствовал у Дэвида Фридмана) вместе с применением каузальных рассуждений позволяют вычислить убийцу.

Хотя теория миазмов в наше время полностью развенчана, бедность в этом примере, несомненно, являлась конфаундером, как, впрочем, и местоположение. Однако, даже не собирая данные по этим переменным (так далеко опросы доктора Сноу не заходили), а используя лишь инструментальную переменную, мы способны вычислить, сколько жизней было бы спасено благодаря чистой воде.

 

Рис. 48. Диаграмма для холеры после введения инструментальной переменной

 

Вот как это работает. Для простоты мы вернемся к именам Z, X, Y и U для наших переменных и перерисуем диаграмму рис. 48 так, как на рис. 49. Я добавил путевые коэффициенты (a, b, c, d), отражающие силу каузальных воздействий. Мы, таким образом, предполагаем, что наши переменные исчислимы, а функции, описывающие их, линейны. Вспомним, что путевой коэффициент a означает, что интервенция по увеличению Z на одну стандартную единицу увеличит X на a стандартных единиц (здесь я опущу технические подробности о том, что такое «стандартная единица»).

Z, X, Y U a, b, c, d a Z X a

Поскольку Z и X ничем не осложнены, каузальное воздействие Z на X (т. е. a) можно оценить по наклону rXZ линии регрессии X на Z. Аналогично переменные Z и Y не осложнены, потому что путь ZXUY блокируется схождением по X. Следовательно, наклон линии регрессии Z на Y (rZY) будет равен каузальному воздействию на прямом пути ZXY, которое представляет собой произведение путевых коэффициентов: ab. Итак, получаем два уравнения: ab = rZY и a = rZX. Если мы разделим первое уравнение на второе, то получим каузальное воздействие X на Y: b = rZY / rZX.

Z X Z X