Поскольку анализ опосредования намного проще для линейных моделей, посмотрим, как он осуществляется, и с чем вероятны проблемы. Допустим, у нас есть каузальная диаграмма, выглядящая как рис. 59. Поскольку мы работаем с линейной моделью, мы можем представить силу каждого воздействия одним числом. Метки (путевые коэффициенты) показывают, что увеличение переменной
Каково же будет суммарное воздействие интервенции, благодаря которой экспериментальное воздействие увеличится на 1 единицу? Во-первых, эта интервенция напрямую вынуждает итог увеличиться на 7 единиц (если мы удерживаем медиатор на постоянном уровне). Она также увеличивает медиатор на 2 единицы. Наконец, поскольку каждое увеличение медиатора на 1 единицу напрямую вызывает увеличение итога на 3 единицы, увеличение медиатора на 2 единицы приведет к дополнительному увеличению итога на 6 единиц. Поэтому суммарное увеличение итога по обоим каузальным путям будет составлять 13 единиц. Первые 7 единиц соответствуют прямому воздействию, а оставшиеся 6 — непрямому воздействию. Проще пареной репы!
Рис. 59. Пример линейной модели (путевая диаграмма) с опосредующей переменной
Итак, если имеется более одного непрямого пути от
В 1986 году Рубен Барон и Дэвид Кенни сформулировали набор принципов для обнаружения и оценки опосредования в системе уравнений. Основные принципы заключаются, во-первых, в том, что все переменные связаны линейными уравнениями, которые оцениваются путем подбора их в соответствии с данными. Во-вторых, прямые и непрямые воздействия исчисляются путем подбора двух уравнений, соответствующих данным: одного с опосредующей переменной и другого без нее. Значительное изменение коэффициентов в случае, когда вводится опосредующая переменная, считается доказательством наличия опосредования.