Светлый фон
суммарное воздействие = прямое воздействие + непрямое воздействие образование

Тем не менее — вопреки ожидаемому — несколько видоизмененная разновидность аддитивности сохраняется, не только здесь, но и вообще. Читателям, которые не испугаются небольших подсчетов, возможно, будет интересно сосчитать ННВ для возврата от X = 1 до X = 0. В этом случае зарплата падает с 13 до 7 и итог меняется с 1 на 0 (т. е. податель заявления отказывается от предложения). Подсчитанное в обратном направлении ННВ = –1.0 Восхищение вызывает тот факт, что суммарное воздействие (X = 0 → X = 1) = НПВ (X = 0 → X = 1) — ННВ (X = 1 → X = 0), или в этом случае 1 = 0 — (–1). Вы видите версию аддитивного принципа для натуральных воздействий, только в данном случае это оказывается субстрактивный (вычитательный) принцип! Я был невероятно счастлив, когда из анализа стал вырисовываться такой вариант аддитивности, несмотря на нелинейность уравнений.

X X суммарное воздействие X X X X X X

Немало чернил ушло на споры о самом «правильном» способе обобщения прямых и непрямых воздействий при переходе от линейных к нелинейным моделям. К сожалению, большая часть статей подходит к проблеме с конца. Вместо того чтобы заново, с нуля решить, что мы имеем в виду под прямым и непрямым воздействиями, они начинают с предположения, что нам всего-то нужно немного подправить определения для линейных моделей. Например, в Линейной Стране Чудес мы видели, что непрямое воздействие подается как произведение двух путевых коэффициентов. Поэтому некоторые исследователи попытались определить непрямое воздействие как произведение двух численных выражений, из которых одно измеряет воздействие X на M, а второе — воздействие M на Y. Этот подход стал известен как метод произведения коэффициентов. Однако мы также видели, что в Линейной Стране Чудес непрямое воздействие задается разницей между суммарным воздействием и прямым воздействием. Поэтому другая, не менее самоотверженная группа исследователей определяла непрямое воздействие как разницу двух численных показателей, один из которых отражал суммарное воздействие, а другой — прямое воздействие. Этот метод стал называться методом разницы коэффициентов.

X M M Y

Какой же из них верен? Ни тот ни другой! Обе группы исследователей спутали процедуру и смысл. Процедура здесь математическая: смысл каузальный. На самом деле проблема еще глубже: исследователи, занимающиеся регрессионным анализом, никогда не рассматривали смысл непрямого воздействия за рамками пузыря линейных моделей. Единственным значением понятия непрямого воздействия был результат алгебраической процедуры (перемножить путевые коэффициенты). Когда эту процедуру у них отобрали, их стало носить ветром, как лодку без якоря.