Светлый фон

Но один аспект глубокого обучения меня все-таки интересует: теоретические ограничения этих систем и, в первую очередь, ограничения, проистекающие из их неспособности выйти за пределы первого уровня на Лестнице Причинности. Это ограничение не препятствует работе AlphaGo в узком мире игры го, поскольку описание доски вместе с правилами игры составляет адекватную причинную модель для мира го. Тем не менее это препятствует системам обучения, которые действуют в средах, управляемых насыщенными сетями причинных сил, но имея при этом доступ только к поверхностным их проявлениям. Медицина, экономика, образование, климатология и социальная сфера — типичные примеры таких сред. Подобно узникам в знаменитой пещере Платона, системы глубокого обучения исследуют тени на стене и учатся точно предсказывать их движения. Им не хватает понимания того, что наблюдаемые тени — лишь проекции трехмерных объектов, движущихся в трехмерном пространстве. Сильный ИИ требует этого понимания.

Исследователи глубокого обучения знают об этих основных ограничениях. Так, экономисты, использующие машинное обучение, отметили, что их методы не отвечают на ключевые вопросы нынешнего времени, положим не позволяют оценить, как подействуют неопробованные пока методы и меры. Типичные примеры здесь — новые принципы ценообразования, субсидии, изменение минимальной заработной платы. С технической точки зрения методы машинного обучения сегодня обеспечивают эффективный способ перейти от анализа конечных выборок к распределениям вероятностей, но нам еще только предстоит перейти от последних к причинно-следственным связям.

Когда мы начинаем говорить о сильном ИИ, причинные модели превращаются из роскоши в необходимость. Для меня сильный ИИ — это машина, которая может размышлять о своих действиях и извлекать уроки из совершенных ошибок. Она должна понимать высказывание «Надо было поступить иначе» независимо от того, говорит ли это ей человек или она сама приходит к такому выводу. Контрфактивная интерпретация этого утверждения выглядит так: «Я сделал X = X, и результат был Y = Y. Но если бы я действовал иначе, скажем, X = X¢, то результат был бы лучше, возможно, Y = Y¢». Как мы уже увидели, оценка таких вероятностей была полностью автоматизирована при наличии достаточного объема данных и адекватно обозначенной причинной модели.

X X Y Y X X Y Y

Более того, я думаю, что очень важной целью для машинного обучения будет более простая вероятность P (YX = X1 = Y¢ | X = X), когда машина наблюдает X = X, но не результат Y, а затем спрашивает о результате альтернативного события X = X¢. Если машина способна вычислить эту величину, то это преднамеренное действие можно рассмотреть как наблюдаемое событие (X = x) и спросить: «А если я поменяю решение и сделаю вместо этого X = X¢?» Это выражение математически эквивалентно эффекту лечения на уже пролеченных (упоминается в главе 8), и у нас есть масса результатов, которые показывают, как его оценить.