Светлый фон
x y

Символизм для формализации математики, а также общий подход и первые попытки доказательства непротиворечивости принадлежат Гильберту. Своей дальнейшей разработкой эта программа обязана его молодым сотрудникам П. Бернайсу, В. Аккерману и Дж. фон Нейману. Последние два доказали непротиворечивость «арифметики», вернее, той её части, которая ещё обходится без опасной аксиомы о превращении предикатов в множества. Одно время казалось, что этот пробел незначителен, и уже разрабатывались подробные планы для проникновения в анализ. Затем произошла катастрофа: допуская, что непротиворечивость уже установлена, К. Гёдель указал способ построения арифметических утверждений, истинность которых очевидна, но которые тем не менее не выводятся в рамках формализма. Его метод применим как к гильбертову, так и к любому другому, не слишком ограничительному формализму. Из двух совокупностей, первая из которых состоит из всех формул, получаемых в формализме Гильберта, а вторая — из всех реальных утверждений, истинность которых очевидна, ни одна не содержит другую (при условии, что непротиворечивость формализма может быть установлена). Очевидно, что вопрос о полноте формализма в том абсолютном смысле, в котором его видел Гильберт, был тем самым снят. Когда позже Г. Генцен восполнил пробел в доказательстве непротиворечивости арифметики, существенность которого была обнаружена открытием Гёделя, ему пришлось это сделать с помощью значительного снижения требований Гильберта к очевидности 26. Границы того, что заслуживало доверия с интуитивной точки зрения, вновь стали неопределенными. Так как защита отчизны–арифметики поглотила все силы, наступление на анализ так и не началось, не говоря уже об общей теории множеств.

полноте

В таком положении эта проблема находится в настоящее время; никакого окончательного решения не видно. Но независимо от того, что принесет будущее, нет никакого сомнения в том, что Брауэр и Гильберт подняли проблему оснований математики на новый уровень. О возвращении на позиции Principia Mathematica Рассела и Уайтхеда не может быть и речи.

Principia Mathematica

Гильберт — поборник аксиоматического метода. Он.считал, что этот метод имеет универсальное значение не только в математике, но и во всех науках. Его исследования в области физики пронизаны аксиоматическим духом. В своих лекциях он любил иллюстрировать этот метод примерами из биологии, экономики и т.д.

Современная эпистемологическая интерпретация науки испытала большое влияние его идей. Временами, когда он восхвалял аксиоматический метод, казалось, будто он хочет сказать, что этот метод полностью вытеснит конструктивный или генетический метод. Я уверен, что, по крайней мере в поздние его годы, это не было его настоящим мнением. Хотя исходные математические объекты он вводит с помощью аксиом своей символической системы, формулы строятся им в самом явном и конечном виде. В последнее время аксиоматический метод распространился на все ветви математического дерева. Одна из них, алгебра, насквозь пронизана аксиоматическим духом. Аксиомы играют здесь, можно сказать, служебную роль, являясь средством для определения области изменения переменных, участвующих в явных конструкциях. Однако нетрудно представлять себе картину и по-другому, что именно они являются основными действующими лицами. Нейтральная точка зрения отдает должное как той, так и другой стороне; немалая доля привлекательности современных математических исследований обязана счастливому сочетанию аксиоматического и генетического методов.