Возможен и другой вариант сказанного. Обычную точку зрения можно трактовать так: любой объект существует в неограниченном количестве абсолютно одинаковых копий, и, когда одна из них «истрачена» на конструкцию другого объекта, остаётся сколько угодно других. Возможно, в нашей гипотетической теории придётся отказаться от абсолютной одинаковости «копии» и принять, что они «изготовляются» в пределах некоторых «допусков». Кстати, это хорошо соответствует идее «размытости» объектов теории, о чём говорилось ранее.
Заканчивая эту заметку, я понимаю, конечно, что ничего не доказал, да и не пытался что-либо доказать. Я хотел только привлечь внимание к проблематике, которую смог обрисовать – это также нужно признать – лишь весьма туманно. Но обрисовать её более ясно – это уже означало бы продвинуться и в её решении.
Мне неизвестны какие-либо печатные материалы по затронутой теме, но в устной передаче я слышал, что о ней думали; по-видимому, в чём-то родственные соображения относительно натурального ряда высказывал в своё время Н. Н Лузин.
Сведения о предыдущих публикациях статей
Сведения о предыдущих публикациях статей
Все статьи сборника были в своё время опубликованы. Шесть из них – в книге: Успенский В. А. Труды по нематематике: В 2 т. Т. 1. – М.: ОГИ, 2002. – 580 с. Ниже при ссылках сокращённо обозначается так: [ТпН-1].
Для данного издания все статьи – за исключением, разумеется, не принадлежащих автору и включённых в качестве приложений I и II – перерабатывались, причём в отдельных случаях довольно существенно. Таким образом, указанные ниже предыдущие варианты могут значительно отличаться от публикуемых в этом сборнике.
1. Из предисловия к сборнику переводов «Математика в современном мире»
Из предисловия к сборнику переводов «Математика в современном мире»а. Математика в современном мире / Пер. с англ. Н. Г. Рычковой. – М.: Мир, 1967. – С. 5–11. б. [ТпН-1]. С. 266–273.
а. Математика в современном мире / Пер. с англ. Н. Г. Рычковой. – М.: Мир, 1967. – С. 5–11.
а.б. [ТпН-1]. С. 266–273.
б.2. Математическое и гуманитарное: преодоление барьера
Математическое и гуманитарное: преодоление барьераа. Знамя. 2007. № 12. С. 165–173. б. Успенский В. А. Предисловие к математике. – СПб.: ООО «Торгово-издательский дом "Амфора"», 2015. – С. 5–51.
а. Знамя. 2007. № 12. С. 165–173.