Быть может, имеет смысл сделать такое замечание. В современных космологических теориях само собой разумеется, что сколь угодно большие космические протяжённости должны описываться на основе существующих математических представлений о натуральном ряде и числовой прямой. Но так ли это очевидно? Вспомним, что ещё в 1900-х гг. физики обсуждали вопрос о геометрической форме электрона. Считалось вполне осмысленным предположение, что электрон по своей геометрии не отличается от бильярдного шарика очень малого размера. Другими словами, считалось, что наши геометрические представления полностью применимы к обьектам микромира; только последующее появление и развитие квантовой механики показало абсурдность этой «очевидной» точки зрения.
Не следует ли ожидать, что в области очень больших протяжённостей нас ещё ждут сюрпризы, подобные встретившимся в области протяжённостей очень малых (но, конечно, сюрпризы совсем другого стиля). И не исключено, что описание ситуации потребует существенно иных конструкций в самом математическом фундаменте, т. е. наших представлениях об очень больших числах.
Впрочем, возможно, что нам даже не придётся углубляться в космос для проверки того, насколько очень большие материальные совокупности на самом деле подчиняются счёту на основе теории натурального числа. Возможно, что какое-нибудь из следующих поколений ЭВМ достигнет столь гигантских возможностей в смысле количества производимых операций, что соответствующие эксперименты станут реальными.
Ещё одно замечание в сторону. Знаменитые отрицательные результаты Гёделя 1930-х гг. в своём фундаменте исходят из убеждения: сколько бы ни продолжать построение метаматематических формул для данной (полностью формализованной) математической теории, принципы пересчёта и упорядочения формул остаются обычными, т. е. подчинёнными схеме натурального ряда. Разумеется, это убеждение даже не оговаривалось, настолько оно считалось очевидным.
Между тем построение метаматематических формул – это реальный физический процесс, производимый человеком или, как стало возможно в последнее время, машиной.
Если мы откажемся от догмата, что натуральный ряд идеально приспособлен для описания любых сколь угодно больших материальных совокупностей, то становятся сомнительными и результаты Гёделя; точнее, их придётся рассматривать, возможно, как утверждения, относящиеся не к реальному развитию данной формализованной математической теории, а к условному, идеализированному её развитию, когда при пересчёте формул, сколь много бы их ни было, и при описании их структуры, сколь громоздка ни была бы она, мы считаем законным применять схему натурального ряда. На это дополнительное условие, в сущности, и опирается тонкая игра Гёделя с двойным, математическим и метаматематическим, толкованием некоторых сконструированных им соотношений. Не успокаивает и финитность конструкций Гёделя: при полной расшифровке сокращений (что в данном контексте является принципиальным) его конструкции становятся чрезвычайно сложными, явно не выписываются, и сомнения, высказанные раньше насчёт поведения «очень больших» совокупностей, напрашиваются и здесь.